Problem Set 2.

Quasiclassical wave functions.

Problem 2.1

(a) Consider a one-dimensional particle in an eigenstate of a discrete spectrum in a potential well $U(x)$. In the quasiclassical approximation, compute the probability for the particle to be in the classically prohibited region. Is it true that this probability is much smaller than one? [Hint: the integral $\int_{0}^{\infty}(A i(z))^{2} d z$ is just a number. Its approximate value is $\int_{0}^{\infty}(A i(z))^{2} d z \approx 0.06699 \ldots$ You don't need to compute it analytically.]
(b) Apply the result to the n-th level of the harmonic oscillator.

Problem 2.2

Consider a one-dimensional particle in an eigenstate of a discrete spectrum in a potential well $U(x)$. In the quasiclassical approximation, what is the expectation value $\langle F(x)\rangle$ of an observable depending only on the coordinate x ? Consider an example of the harmonic oscillator, and compute in the quasiclassical approximation $\left\langle x^{2}\right\rangle$ and $\left\langle x^{4}\right\rangle$ in the n-th eigenstate. Compare with the exact result.

