Problem Set 4.

Quasistationary states. Perturbation theory for scattering.

Problem 4.1

Consider a one-dimensional particle on half-line x > 0 constrained by a δ -potential $U = \alpha \delta(x - a)$ (Fig. 1). (The boundary condition at x=0 correspond to the inifinitely high potential wall $\Psi(x = 0) = 0$.) Find the quasistationary levels (their energies and widths) assuming that the tunneling through the potential is weak $(m\alpha a/\hbar^2 \gg 1)$. Relate the level widths to the transmission coefficient of the barrier (see Problem 0.1).

Problem 4.2

To the first order in the perturbation theory, find the reflection coefficient of a shortranged potential barrier U(x). Apply the result to the scattering of fast particles on a (a) δ -potential $U(x) = \alpha \delta(x)$; (b) potential with a discontinuity at x = 0 (as in Problem 3.2). Compare the results to those of Problems 0.1 and 3.2.