# http://www.itp.phys.ethz.ch/staff/ivanov/pq3 <br> Quantum Physics III, 2005-2006 

Problem Set 5.
Scattering amplitude and cross-section. Born approximation.

## Problem 5.1

In the Born approximation, find the scattering amplitude and the total scattering cross-section for the following centrally symmetric potentials:
(a) $U(r)=U_{0} e^{-r / R}$;
(b) $U(r)=U_{0} e^{-r^{2} / R^{2}}$.
(c) $U(r)=\alpha / r^{2}$.

Specify the limits of applicability of the Born approximation.
Problem 5.2
In the Born approximation, the forward-scattering amplitude (the scattering angle $\theta=$ 0 ) is real, and therefore it appears to be in contradiction with the optical theorem. Resolve the contradiction. Compute the second-order perturbative correction to the scattering aplitude and verify the optical theorem to the second order in the perturbation theory.

## Problem 5.3

Calculate the phase shifts $\delta_{l}(k)$ in the scattering potential $U(r)=\alpha / r^{2}$. Using this result, calculate the scattering amplitude $f(k, \theta)$ from the relation

$$
\begin{equation*}
f(k, \theta)=\frac{1}{2 i k} \sum_{l=0}^{\infty}(2 l+1)\left[e^{2 i \delta_{l}}-1\right] P_{l}(\cos \theta) \tag{1}
\end{equation*}
$$

in the following limits:
(a) $m \alpha / \hbar^{2} \ll 1$ for arbitrary scattering angle;
(b) $m \alpha / \hbar^{2} \gtrsim 1$ for small scattering angles;
(c) $m \alpha / \hbar^{2} \gg 1$ for backward scattering $(\theta=\pi)$.

Compare to the Born-approximation results (Problem 5.1).

