Problem Set 1.

Propagators in quantum mechanics

Problem 1.1

Consider two one-dimensional systems:

(1) free particle,

$$H = \frac{p^2}{2m} \tag{1}$$

(2) harmonic oscillator,

$$H = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2 \tag{2}$$

For both systems, find the propagators K(x, t; x', t') (in real-space representation, i.e., as functions of x and t). Show that they have the same asymptotic behavior as $(t-t') \rightarrow 0$. Will it be true for any potential?

Problem 1.2

For a stationary system, the propagator K(x,t;x',t') depends only on the time difference t - t'. Let $K(x,x',\omega)$ denote the Fourier transform of K(x,t;x',t') in t - t'. Express the density of states (number of energy levels in a given energy interval) in terms of $K(x,x',\omega)$. Check that your propagators from the Problem 1.1 reproduce the known answers for the density of states.

Problem 1.3

Verify that the propagators K(x, x', t, t') which you have obtained in Problem 1.1 obey the "superposition" rule: for any three time moments $t_3 > t_2 > t_1$

$$K(x_3, t_3; x_1, t_1) = \int dx_2 \, K(x_3, t_3; x_2, t_2) \, K(x_2, t_2; x_1, t_1) \tag{3}$$

Problem 1.4

Consider an one-dimensional particle in the attractive δ -potential:

$$H = \frac{p^2}{2m} - \alpha \delta(x) \tag{4}$$

Treating the potential as a perturbation, write the perturbation series for the Green's function $G(p, \omega)$. Sum the perturbation series and show that the Green's function acquires a new pole at ω corresponding to the energy of the bound state.

Can you do the same calculation in two and three dimensions?