Quantum Physics IV, 2005

Problem Set 2.

Quasiclassical limit and some algebra.
Problem 2.1 A little bit of algebra.
Using the Taylor series

$$
\begin{equation*}
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \tag{1}
\end{equation*}
$$

prove the operator series

$$
\begin{equation*}
(A-B)^{-1}=A^{-1}+A^{-1} B A^{-1}+A^{-1} B A^{-1} B A^{-1}+\ldots \tag{2}
\end{equation*}
$$

where A and B are linear operators (generally non-commuting).
This series is convergent for sufficiently small B (can you specify the condition of convergence?)

Problem 2.2 Gaussian integrals.
Integrals of exponents of quadratic polynomials are called "gaussian". The simplest such integral is

$$
\begin{equation*}
\int_{-\infty}^{+\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} \tag{3}
\end{equation*}
$$

(1) Consider a symmetric matrix $A_{i j}$ of dimension N and prove that

$$
\begin{equation*}
Z \equiv \int_{-\infty}^{+\infty} d x_{1} \ldots d x_{N} \exp \left(\sum_{i j} x_{i} A_{i j} x_{j}\right)=\frac{\pi^{N / 2}}{\sqrt{\operatorname{det} A}} \tag{4}
\end{equation*}
$$

Hint: do the integration in the basis of eigenvectors of A.
(2) Compute the average

$$
\begin{equation*}
\left\langle x_{k} x_{l}\right\rangle=\frac{1}{Z} \int_{-\infty}^{+\infty} d x_{1} \ldots d x_{N} x_{k} x_{l} \exp \left(\sum_{i j} x_{i} A_{i j} x_{j}\right) \tag{5}
\end{equation*}
$$

Problem 2.3

Consider the propagator of the free one-dimensional particle

$$
\begin{equation*}
K\left(t_{f}, x_{f} ; t_{i}, x_{i}\right)=\sqrt{\frac{m}{2 \pi i \hbar\left(t_{f}-t_{i}\right)}} \exp \left[\frac{i}{\hbar} \frac{M\left(x_{f}-x_{i}\right)^{2}}{2\left(t_{f}-t_{i}\right)}\right] \tag{6}
\end{equation*}
$$

To estimate how much the quantum particle deviates from its classical trajectory, we can calculate the following "average deviation"

$$
\begin{equation*}
\left\langle\delta x^{2}(t)\right\rangle \equiv \frac{\int d x K\left(t_{f}, x_{f} ; t, x\right) x^{2} K\left(t, x ; t_{i}, x_{i}\right)}{K\left(t_{f}, x_{f} ; t_{i}, x_{i}\right)} \tag{7}
\end{equation*}
$$

Compute this "average". Why is it not real?

Problem 2.4

As we have shown in class, the quasiclassical expression for the propagator is

$$
\begin{equation*}
K\left(t_{f}, x_{f} ; t_{i}, x_{i}\right)=\sqrt{\frac{m}{2 \pi i \hbar \varphi\left(t_{f}\right)}} \exp \left[\frac{i}{\hbar} S_{c l}\right] \tag{8}
\end{equation*}
$$

where $\varphi(t)$ is a function defined as the solution to the differential equation

$$
\begin{equation*}
m \ddot{\varphi}+U^{\prime \prime}\left(x_{c l}(t)\right) \varphi=0 \tag{9}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\varphi\left(t_{i}\right)=0, \quad \dot{\varphi}\left(t_{i}\right)=1 \tag{10}
\end{equation*}
$$

We want to reproduce the same result with the quasiclassical wave functions in the Hamiltonian formalism (with a time-independent Hamiltonian). We use

$$
\begin{equation*}
K\left(t_{f}, x_{f} ; t_{i}, x_{i}\right)=\int \frac{d E}{2 \pi} \Psi_{E}\left(x_{f}\right) \Psi_{E}^{*}\left(x_{i}\right) e^{-i E\left(t_{f}-t_{i}\right)} \tag{11}
\end{equation*}
$$

where Ψ_{E} are the eigenfunctions at energies E. The wave functions in this formula must be normalized so that

$$
\begin{equation*}
\int d x \Psi_{E}(x) \Psi_{E^{\prime}}^{*}(x)=2 \pi \delta\left(E-E^{\prime}\right) \tag{12}
\end{equation*}
$$

The quasiclassical expression with the appropriate normalization is

$$
\begin{equation*}
\Psi_{E}(x)=\sqrt{\frac{m}{\hbar p(x)}} \exp \left[\frac{i}{\hbar} \int^{x} p\left(x^{\prime}\right) d x^{\prime}\right], \tag{13}
\end{equation*}
$$

where $p(x)=\sqrt{2 m(E-U(x))}$.
Substitute this expression into (11), expand to the second order in fluctuations around the classical action, and obtain the propagator in the form (8) with

$$
\begin{equation*}
\varphi(t)=m p(x) p\left(x_{i}\right) \int_{x_{i}}^{x} \frac{d x^{\prime}}{p^{3}\left(x^{\prime}\right)} \tag{14}
\end{equation*}
$$

where $x=x_{c l}(t)$ is the classical trajectory of the particle. Finally, show that this $\varphi(t)$ obeys the equations (9), (10).

