Quantum Physics IV, 2005

Problem Set 5.

Landau levels. Spin tunneling by path integral.
Problem 5.1 Landau levels on a torus.
Consider a charged spinless two-dimensional particle of mass m in a box $L_{x} \times L_{y}$ with periodic boundary conditions (i.e. particle on a torus). We can impose "magnetic-flux" boundary conditions:

$$
\begin{equation*}
\Psi\left(x+L_{x}, y\right)=e^{i \phi_{x}} \Psi(x, y), \quad \Psi\left(x, y+L_{y}\right)=e^{i \phi_{y}} \Psi(x, y) \tag{1}
\end{equation*}
$$

The spectrum obviously depends on the twists ϕ_{x} and ϕ_{y}.
Now apply a uniform magnetic field B through the plane.
(a) Show that the problem is well-defined only if the total flux is a multiple of $2 \pi / e$ (e is the particle charge):

$$
\begin{equation*}
e B L_{x} L_{y}=2 \pi N \tag{2}
\end{equation*}
$$

For this problem, define appropriate boundary conditions on the wave function Ψ. Note that for $N \neq 0$ the magnetic vector potential is not single valued: you need to define covering of the torus by two domains (on each of them the vector potential is singlevalued), and the wave functions on the overlapping parts of the domains will be identified by a gauge transformation.
(b) Show that with the magnetic field, the spectrum of the particle does not depend on the additional twists ϕ_{x} and ϕ_{y} in the boundary conditions. Hint: consider shifts of the wave function in the x and y directions.
(c) Find the spectrum of the particle. You should recover exactly degenerate Landau levels with the degenracy N each. What are the wave functions of those states?

Problem 5.2 Spin tunneling by path integral.
Consider the spin Hamiltonian

$$
\begin{equation*}
H=K_{x} S_{x}^{2}+K_{y} S_{y}^{2}, \quad K_{x}>K_{y}>0 \tag{3}
\end{equation*}
$$

In the large-spin limit, the tunneling between the two classical minima $S_{z}= \pm S$ may be studied with the path-integral approach [see D.Loss, D.P.DiVincenzo, G.Grinstein, Phys. Rev. Lett. 69, 3232 (1992)]. For half-integer spin the tunneling amplitude is zero (destructive interference).

In the case of integer spin S, the tunneling amplitude contains a quasiclassical tunneling action $S_{c l}$. Calculate this action. The result is

$$
\begin{equation*}
S_{c l}=S \ln \frac{1+\sqrt{\kappa}}{1-\sqrt{\kappa}}, \quad \kappa=\frac{K_{y}}{K_{x}} \tag{4}
\end{equation*}
$$

Proceed along the following lines:
(1) First, show that the corresponding classical Hamiltonian is

$$
\begin{equation*}
\langle\mathbf{n}| H|\mathbf{n}\rangle=\mathrm{const}+S\left(S-\frac{1}{2}\right)\left(K_{x} n_{x}^{2}+K_{y} n_{y}^{2}\right) \tag{5}
\end{equation*}
$$

(2) Second, find the tunneling trajectory. It should satisfy the system of equations

$$
\begin{align*}
n_{x}^{2}+n_{y}^{2}+n_{z}^{2} & =1 \\
K_{x} n_{x}^{2}+K_{y} n_{y}^{2} & =0 \tag{6}
\end{align*}
$$

Obviously, some of the coordinates n_{i} should become complex. The corresponding Berry phase also becomes complex - and its imaginary part is exactly the "tunneling action" we are looking for.
(3) Finally, find the classical action - the imaginary part of the Berry phase. We continuously connect the complex tunneling trajectory $\mathbf{n}(\theta)$ to an arbitrary real trajectory on the sphere $\mathbf{n}_{0}(\theta)$. The set of all intermediate trajectories defines a two-dimensional surface Σ parametrized by the two coordinates $\mathbf{n}(\varphi, \theta)$. The imaginary part of the Berry phase is then

$$
\begin{equation*}
S_{c l}=S \operatorname{Im} \int_{\Sigma} d \varphi d \theta\left(\mathbf{n},\left[\frac{\partial \mathbf{n}}{\partial \phi}, \frac{\partial \mathbf{n}}{\partial \theta}\right]\right) \tag{7}
\end{equation*}
$$

After you do the integral, you should recover the result (4).
P.S. The preprint version of the above mentioned PRL paper is available at http://xxx.lanl.gov/abs/cond-mat/9208012.

