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Main goals of these lessons

- Have an understanding of what are multivariate analyses 

- How they are used in high energy physics

- Answer to the questions : what is a neural network ? a boosted decision 
tree ? what are the multivariate methods currently used in HEP ?

- Become familiar with problems related with training and application of 
multivariate methods

- Be aware of the systematic uncertainties related to multivariate techniques

- Be able to understand the results of new physics searches at Tevatron or 
LHC in the form where they are presented usually, and how they were 
produced
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Introductory comments

- In these lectures, examples will be mainly taken from Higgs boson 
searches at LHC

- Will focus on multivariate methods commonly used in the high energy 
physics community

- Theory will be addressed as a tool for practical usage
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Exercises

- Proposed exercises will follow the progress of the lecture

- Problem inspired by Higgs searches in H->2photons channel at LHC

- Goal : be able to estimate the sensitivity of a search for a small peak over a 
huge background, using multivariate methods

- 3 exercises :
- Setting up Root and TMVA environment, TMVA basics
- Using a MVA method inside the analysis
- Estimation of analysis sensitivity
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Outline

1.Introduction
2.Multivariate methods
3.Optimization of MVA methods
4.Application of MVA methods in HEP
5.Understanding Tevatron and LHC results
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Lecture 1. Introduction

6



Content of this lecture

- Introduction
- Experimental problems in high energy physics
- The problem : how to distinguish signal from background ?

- Multivariate analyses examples in HEP
- At the Tevatron 
- At the LHC

- Presentation of commonly used multivariate methods

7



Searching for rare signals

Higgs and new physics cross-sections are small...
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Examples of 
background to 
H→ZZ searches

5 orders of 
magnitude



Over huge backgrounds

To achieve a discovery, huge background reduction rate 
needed

- Example of H→γγ : typically 9 orders of magnitude under the 
QCD jets background

- Reducible background : jet-jet, photon-jet
- Jets can be mis-identified as photons

! => can be suppressed by tight photon identification criteria
- Irreducible background : photon-photon

- Non-resonant diphoton continuum
! => Can be discriminated using kinematic properties
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Prompt diphoton production at hadron colliders 

•  Prompt photons = photons produced directly in perturbative 
scattering or via parton fragmentation (as opposed to non-
perturbative photon production in meson decays). 

•  At much smaller rate, prompt diphotons may originate from 
more exotic (and exciting!) production mechanisms: 

•  Higgs decay 

•  Extra dimensions 

•  SUSY 
•  … 

LHC (14 TeV) 

Other NP? 
6 6 

 Precise measurements of QCD !! production should 
puts us on solid footing to search for new physics: 
•  Validate/improve theoretical predictions for 

irreducible (QCD !!) background. 
•  Develop/demonstrate good control over reducible 

backgrounds. 



With a given detector
(here, CMS)
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Experimental issues

Experimental challenges :
- Detector calibration
- Identification of the tracks / energy deposits 

in the sub-detectors
- Particle reconstruction
- Particle identification
- Finding the vertex of hard interaction among 

all pile-up vertices
- Discriminate the signal process against all 

other background processes
- ...

- Multivariate methods can help for that
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Collision with 20 pile-up events recorded with 
the ATLAS detector



Multivariate analysis : Definitions

MultiVariate Analysis :
- Set of statistical analysis methods that simultaneously analyze multiple 
measurements (variables) on the object studied 
- Variables can be dependent or correlated in various ways

Classification / regression :
- Classification : discriminant analysis to separate classes of events, given 

already known results on a training sample
- Regression : analysis which provides an output variable taken into account the 
correlations of the input variables

Statistical learning :
- Supervised learning : the multivariate method is trained over a sample were 

the result is known (e.g. Monte-Carlo simulation of signal and background)
- Unsupervised learning : no prior knowledge is required. The algorithm will 

cluster events in an optimal way
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Event classification

- Focus here on supervised learning for classification.
- Use case in particle physics : signal/background discrimination

- Assume we have two populations (signal and background) and two variables
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- How to decorrelate, what decision 
boundary (on X1 and X2) to 
choose, to decide if an event is 
signal or background ?



Event classification

- Possible solutions : rectangular cuts, Fisher, non-linear contour
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Rectangular cuts Linear (Fisher) Non-linear



Multivariate analyses in HEP

- Signal/background discrimination :
- Object reconstruction : discriminate against instrumental background 

(electronic noise...)
- Object identification : e.g. electron, bottom quark identification, to 

improve the rejection other objects resembling (e.g. jets)
- Discriminating physics process against physics backgrounds. Many 

examples, e.g. single top against W+jets, H->WW against WW 
background...

- Improving the energy measurement, via regression. Allows to narrow the 
reconstructed mass peak, improve the resolution.

- Estimate the sensitivity of the analysis :
- Sensitivity to signal exclusion or discoveries : Likelihood of the data to 

be consistent with background only or signal+background hypothesis
- Combination of many channels

! => exclusion limits or discoveries
15



MVA examples in HEP : Tevatron
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Single top discovery

The D0 Collaboration presents first evidence for the production of single top quarks at the Fermilab
Tevatron p !p collider. Using a 0:9 fb!1 dataset, we apply a multivariate analysis to separate signal from
background and measure !"p !p ! tb# X; tqb# X$ % 4:9& 1:4 pb. The probability to measure a cross
section at this value or higher in the absence of a signal is 0:035%, corresponding to a 3.4 standard
deviation significance. We use the cross section measurement to directly determine the Cabibbo-
Kobayashi-Maskawa matrix element that describes the Wtb coupling and find 0:68< jVtbj ' 1 at 95%
C.L. within the standard model.

DOI: 10.1103/PhysRevLett.98.181802 PACS numbers: 14.65.Ha, 12.15.Hh, 13.85.Ni

Top quarks were first observed in strong t!t pair produc-
tion at the Tevatron collider in 1995 [1]. In the standard
model (SM), !"p !p ! t!t# X$ % 6:8#0:6

!0:5 pb [2] at
!!!
s

p %
1:96 TeV for a top quark mass of 175 GeV. Top quarks are
also expected to be produced singly via the electroweak
processes [3,4] illustrated in Fig. 1. For brevity, we use the
notation ‘‘tb’’ to represent the sum of t !b and !tb, and ‘‘tqb’’
for the sum of tq !b and !t !q b. The next-to-leading-order
(NLO) prediction for the s-channel single top quark cross
section is !"p !p ! tb# X$ % 0:88& 0:11 pb, and for the
t-channel process, the prediction is !"p !p ! tqb# X$ %
1:98& 0:25 pb [5,6].

Single top quark events can be used to study the Wtb
coupling [7], and to measure the magnitude of the element
jVtbj of the quark mixing matrix, [the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [8]], without assuming only three
generations of quarks [9]. The quark mixing matrix must
be unitary, which for three families implies jVtbj ’ 1 [10].
A smaller measured value would indicate the presence of a
fourth quark family to make up the difference. Single top
quark production can also be used to measure the top quark
partial decay width ""t ! Wb$ [11] and hence the top
quark lifetime.

The D0 collaboration has previously published limits
[12] on single top quark production. The best 95% C.L.
upper limits are !"p !p ! tb# X$< 6:4 pb and !"p !p !
tqb# X$< 5:0 pb. The CDF collaboration has also pub-
lished limits on the cross sections [13].

This Letter describes a search for single top quark
production using 0:9 fb!1 of data produced at a center-
of-mass energy of 1.96 TeV. The data were collected from
2002 to 2005 using the D0 detector [14] with triggers that
required a jet and an electron or a muon. The search
focuses on the final state consisting of one high transverse
momentum (pT) isolated lepton and missing transverse
energy ( 6ET), together with a b-quark jet from the decay
of the top quark (t ! Wb ! ‘"b). There is an additional
b quark in s-channel production, and an additional light
quark and b quark in t-channel production. The second b
quark in the t-channel is rarely reconstructed since it is
produced in the forward direction with low transverse
momentum. The main backgrounds are the following:
W bosons produced in association with jets; top quark
pairs decaying into the lepton#jets and dilepton final
states, when a jet or a lepton is not reconstructed; and
multijet production, where a jet is misreconstructed as an

electron, or a heavy-flavor quark decays to a muon that
passes the isolation criteria.

We model the signal using the SINGLETOP NLO
Monte Carlo (MC) event generator [15]. The event kine-
matics for both s-channel and t-channel reproduce distri-
butions found in NLO calculations [5]. The decays of the
top quark and resulting W boson, with finite widths, are
modeled in the SINGLETOP generator to preserve particle
spin information. PYTHIA [16] is used to model the hadro-
nization of the generated partons. For the tb search, we
assume SM tqb as part of the background, and vice versa.
For the tb#tqb search, we assume the SM ratio between
the tb and tqb cross sections.

We simulate the t!t and W#jets backgrounds using the
ALPGEN leading-order MC event generator [17] and
PYTHIA to model the hadronization. A parton-jet matching
algorithm [18] is used to ensure there is no double-
counting of the final states. The t!t background is normal-
ized to the integrated luminosity times the predicted t!t
cross section [2]. The multijet background is modeled
using data that contain nonisolated leptons but which
otherwise resemble the lepton#jets dataset. The W#jets
background, combined with the multijet background, is
normalized to the lepton#jets dataset separately for each
analysis channel (defined by lepton flavor and jet mul-
tiplicity) before b-jet tagging (described later). In the
W#jets background simulation, we scale the Wb !b and
Wc !c components by a factor of 1:50& 0:45 to better
represent higher-order effects [19]. This factor is deter-
mined by scaling the numbers of events in an admixture of
light- and heavy-flavor W#jets MC events to data that
have no b tags but which otherwise pass all selection
cuts. The uncertainty assigned to this factor covers the
expected dependence on kinematics and the assumption
that the factor is the same for Wb !b and Wc !c.

 

q ′

q

t

b

W  +

q ′ q

W 
t

bg

b
(a) (b)

FIG. 1 (color online). Representative Feynman diagrams for
(a) s-channel single top quark production and (b) t-channel
production.

PRL 98, 181802 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
4 MAY 2007

181802-4

These 36 DTs are trained to separate one of the signals
from the sum of the t!t and W!jets backgrounds. One-third
of the MC signal and background events is used for train-
ing; the remaining two-thirds are used to determine the
acceptances in an unbiased manner. A boosted decision
tree produces a quasicontinuous output distribution ODT
ranging from zero to one, with background peaking closer
to zero and signal peaking closer to one. Figures 2(a) and
2(b) show the DT output distributions for two background-
dominated data samples to demonstrate the agreement
between background model and data. Figure 2(c) shows
the high end of the sum of the 12 tb!tqb DT outputs to
illustrate where the signal is expected, and Fig. 2(d) shows
the invariant mass of the reconstructed W boson with the
highest-pT b-tagged jet (where the neutrino longitudi-
nal momentum has been chosen to be the smaller abso-
lute value of the two possible solutions to the mass equa-
tion), for events in a signal-enhanced region with ODT >
0:65. The background peaks near the top quark mass
because the DTs select events similar to single top quark
events.

We apply a Bayesian approach [28] to measure the
single top quark production cross section. We form a
binned likelihood as a product over all bins and channels
(lepton flavor, jet multiplicity, and tag multiplicity) of the
decision tree discriminant, separately for the tb!tqb, tqb,
and tb analyses. We assume a Poisson distribution for the
observed counts and flat nonnegative prior probabilities for
the signal cross sections. Systematic uncertainties and their

correlations are taken into account by integrating over the
signal acceptances, background yields, and integrated lu-
minosity with Gaussian priors for each systematic uncer-
tainty. The final posterior probability density is computed
as a function of the production cross section. For each
analysis, we measure the cross section using the position
of the posterior density peak and we take the 68% asym-
metric interval about the peak as the uncertainty on the
measurement.

We test the validity of the cross section measurement
procedure using six ensembles of pseudodatasets selected
from the full set of tb!tqb signal and background events
weighted to represent their expected proportions. A
Poisson distribution with a mean equal to the total number
of selected events is randomly sampled to determine the
number of events in each pseudodataset. Each ensemble
has a different assumed tb!tqb cross section between
2 and 8 pb. No significant bias is seen in the mean of the
measured cross sections for these ensembles.

The expected SM and measured posterior probability
densities for tb!tqb are shown in Fig. 3. We use the
measured posterior density distribution for tb!tqb as
shown in Fig. 3 and similar distributions for tqb and tb
to make the following measurements: !"p !p! tb!
X;tqb!X#$4:9%1:4 pb, !"p !p! tqb!X#$4:2!1:8

&1:4 pb,
and !"p !p ! tb! X# $ 1:0% 0:9 pb. These results are
consistent with the SM expectations. The uncertainties
include statistical and systematic components combined.
The data statistics contribute 1.2 pb to the total 1.4 pb
uncertainty on the tb!tqb cross section.

We assess how strongly this analysis rules out (or is
expected to rule out) the background-only hypothesis by
measuring the probability for the background to fluctuate
up to give the measured (or SM) value of the tb!tqb cross
section or greater. From an ensemble of over 68 000
background-only pseudodatasets, with all systematic un-
certainties included, we find that the background fluctuates
up to give the SM cross section of 2.9 pb or greater 1:9% of
the time, corresponding to an expected significance of 2.1
standard deviations (SD) for a Gaussian distribution. The
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FIG. 3 (color online). Expected SM and measured Bayesian
posterior probability densities for the tb!tqb cross section. The
shaded regions indicate 1 standard deviation above and below
the peak positions.
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FIG. 2 (color online). Boosted decision tree output distribu-
tions for (a) a W ! jets-dominated control sample, (b) a
t!t-dominated control sample, and (c) the high-discriminant re-
gion of the sum of all 12 tb!tqb DTs. For (a) and (b), HT $
E‘
T ! 6ET !P

Ealljets
T . Plot (d) shows the invariant mass of the

reconstructed W boson and highest-pT b-tagged jet for events
with ODT > 0:65. The hatched bands show the %1 standard
deviation uncertainty on the background. The expected signal
is shown using the measured cross section.
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- When published, very controversial

- 36 boosted decision trees used to 
discriminate signal from background

- First measurement of the single top 
cross-section, today well established

PhysRevLett.98.181802



MVA examples in HEP : Tevatron

ZH→llbb searches at CDF

17

- b-jet energy estimated with a regression neural network, to improve dijet mass 
resolution

- b-tagging with neural networks, used to compute the final limits

ing classifications, in order of precedence from highest to
lowest in S=B: a pair containing two SV-tight-tagged jets,
or tight-double-tagged (TDT); a pair consisting of one SV-
loose-tagged jet and a second JP-tagged jet, or loose-
double-tagged (LDT); and a pair where only one jet has
a SV-tight-tag, or single-tagged (ST). While this b tag
selection has an H ! b !b efficiency (60%) and a Zþ l:f:
rejection rate (96%) similar to those of previous efforts, the
addition of the LDT class increases sensitivity to a ZH
signal by 6%. With two Z boson S=B categories and three
b-tagging classes, we form a total of six independent
subsamples that we analyze for ZH content.

We compare the b-tag data to a model of signal and
backgrounds to estimate the signal content. Signal, t!t, and
diboson events are modeled with the PYTHIA [16] event
generator. Backgrounds from Zþ h:f: processes are simu-
lated at the quark level using ALPGEN [17], then passed to
PYTHIA for hadronization. The Zþ h:f: samples are nor-
malized using leading order ALPGEN cross sections, with a
K factor of 1.4 [18]. We model Zþ l:f: mistags using
reweighted PreTag data with weights reflecting the proba-
bility for a l.f. jet to be erroneously b tagged. Less than 1%
of jets can be erroneously identified as electrons, resulting
in a background of misidentified Z ! ee candidates. A
model for these events is generated by measuring the
misidentification rate in generic jet data and applying this
rate to the data used in the analysis. The misidentified Z !
!! background is modeled with like-charge muon pairs.
Event totals are listed in Table I.

In ZH ! ‘þ‘"b !b events, incorrect measurement of jet

energies results in apparent missing transverse energy ~ET

[19]. We compute jet-energy corrections utilizing a NN
trained to match measured jet energies to parton-level
energies in Zþ jets and ZH events. This NN is improved
compared to that in the previous analysis [8] by utilizing
additional input variables describing the recoil of the Z
boson. The corrected jet energies are used to recompute the
Higgs candidate mass MH, the pT of the jets, the pT of the

Higgs candidate, the projection of ~ET onto the lower-ET

Higgs jet, and the sphericity [20]. The effect of the NN
corrections, which improve the resolution [21] ofMH from
18% to 12%, are shown in Fig. 1.
To exploit the combined signal-to-background discrimi-

nation power of event quantities and their correlations, we
employ neural network discriminants (NND) trained to
simultaneously separate ZH, t!t, and Zþ jets events. The
NND are configured to return values of ðx; yÞ ¼ ð1; 0Þ for
ZH events, (0, 0) for Zþ jets, and (1, 1) for t!t and are
trained separately for each b-tag class. In addition to the
quantities recomputed with corrected jet energies, theNND

inputs include ET , MEPs for ZH, t!t, and Zþ jets processes
[9], the number of jets in the event, and the output of a b jet
identifying artificial neural network (NNb) [22]. The NNb

augments the performance of the SValgorithm by isolating
incorrectly b-tagged l.f. jets. The addition of NNb as an
input enhances the ability of the NND to distinguish ZH
from Zþ l:f:, which constitutes 40% of the total back-
ground in the ST class. Projections of NND output are
shown in Fig. 2.
We estimate the effect of systematic uncertainties by

propagating uncertainties on NND input quantities to the
output distributions. The dominant effects are the uncer-
tainties on cross sections for background processes—a
40% uncertainty is assumed on the normalization of Zþ
h:f: samples [23,24], 11.5% for the diboson samples [25],
20% on t!t [26], and 5% for ZH signal [27]. Uncertainty on
the Zþ l:f: normalization is set by the uncertainties on
b-tag algorithm mistag probabilities and is 15% to 35%
depending on b-tag class. Uncertainties of 4% (ST), 8%
(TDT), and 11% (LDT) on the normalization of b-tagged
samples are applied to account for different b-tag efficien-
cies in data and simulation. Other uncertainties affecting
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FIG. 1. The dijet invariant mass distribution of the two jets
with the highest ET in the PreTag sample. The distribution is
shown for data after NN correction of jet energies. The dijet
mass is shown for background and signal (MH ¼ 115 GeV=c2,
scaled by a factor of 1500) before and after correction.

 Output
D

Projection of NN
0 0.2 0.4 0.6 0.8 1

0
10
20
30
40
50
60
70
80

 Output
D

Projection of NN
0 0.2 0.4 0.6 0.8 1

  E
ve

nt
s 

/ B
in

0
10
20
30
40
50
60
70
80 ST  Data

 25× ZH 

 Diboson, misid. Z, & tt

 Z+h.f.

 Z+l.f.

 Output
D

Projection of NN
0 0.2 0.4 0.6 0.8 1

  E
ve

nt
s 

/ B
in

0

2

4

6

8

10

 Output
D

Projection of NN
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10 LDT

 Output
D

Projection of NN
0 0.2 0.4 0.6 0.8 1

  E
ve

nt
s 

/ B
in

0

1

2

3

4

5

 Output
D

Projection of NN
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5 TDT

FIG. 2. Projections of the two-dimensional neural network (NND) output onto the x axis (x and y are defined in the text) for events in
the b-tag categories ST, LDT, and TDT. Events with an NND score of y & 0:1 are omitted to highlight the signal region. The ZH
contribution is shown, multiplied by a factor of 25, for MH ¼ 115 GeV=c2.
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ing classifications, in order of precedence from highest to
lowest in S=B: a pair containing two SV-tight-tagged jets,
or tight-double-tagged (TDT); a pair consisting of one SV-
loose-tagged jet and a second JP-tagged jet, or loose-
double-tagged (LDT); and a pair where only one jet has
a SV-tight-tag, or single-tagged (ST). While this b tag
selection has an H ! b !b efficiency (60%) and a Zþ l:f:
rejection rate (96%) similar to those of previous efforts, the
addition of the LDT class increases sensitivity to a ZH
signal by 6%. With two Z boson S=B categories and three
b-tagging classes, we form a total of six independent
subsamples that we analyze for ZH content.

We compare the b-tag data to a model of signal and
backgrounds to estimate the signal content. Signal, t!t, and
diboson events are modeled with the PYTHIA [16] event
generator. Backgrounds from Zþ h:f: processes are simu-
lated at the quark level using ALPGEN [17], then passed to
PYTHIA for hadronization. The Zþ h:f: samples are nor-
malized using leading order ALPGEN cross sections, with a
K factor of 1.4 [18]. We model Zþ l:f: mistags using
reweighted PreTag data with weights reflecting the proba-
bility for a l.f. jet to be erroneously b tagged. Less than 1%
of jets can be erroneously identified as electrons, resulting
in a background of misidentified Z ! ee candidates. A
model for these events is generated by measuring the
misidentification rate in generic jet data and applying this
rate to the data used in the analysis. The misidentified Z !
!! background is modeled with like-charge muon pairs.
Event totals are listed in Table I.

In ZH ! ‘þ‘"b !b events, incorrect measurement of jet

energies results in apparent missing transverse energy ~ET

[19]. We compute jet-energy corrections utilizing a NN
trained to match measured jet energies to parton-level
energies in Zþ jets and ZH events. This NN is improved
compared to that in the previous analysis [8] by utilizing
additional input variables describing the recoil of the Z
boson. The corrected jet energies are used to recompute the
Higgs candidate mass MH, the pT of the jets, the pT of the

Higgs candidate, the projection of ~ET onto the lower-ET

Higgs jet, and the sphericity [20]. The effect of the NN
corrections, which improve the resolution [21] ofMH from
18% to 12%, are shown in Fig. 1.
To exploit the combined signal-to-background discrimi-

nation power of event quantities and their correlations, we
employ neural network discriminants (NND) trained to
simultaneously separate ZH, t!t, and Zþ jets events. The
NND are configured to return values of ðx; yÞ ¼ ð1; 0Þ for
ZH events, (0, 0) for Zþ jets, and (1, 1) for t!t and are
trained separately for each b-tag class. In addition to the
quantities recomputed with corrected jet energies, theNND

inputs include ET , MEPs for ZH, t!t, and Zþ jets processes
[9], the number of jets in the event, and the output of a b jet
identifying artificial neural network (NNb) [22]. The NNb

augments the performance of the SValgorithm by isolating
incorrectly b-tagged l.f. jets. The addition of NNb as an
input enhances the ability of the NND to distinguish ZH
from Zþ l:f:, which constitutes 40% of the total back-
ground in the ST class. Projections of NND output are
shown in Fig. 2.
We estimate the effect of systematic uncertainties by

propagating uncertainties on NND input quantities to the
output distributions. The dominant effects are the uncer-
tainties on cross sections for background processes—a
40% uncertainty is assumed on the normalization of Zþ
h:f: samples [23,24], 11.5% for the diboson samples [25],
20% on t!t [26], and 5% for ZH signal [27]. Uncertainty on
the Zþ l:f: normalization is set by the uncertainties on
b-tag algorithm mistag probabilities and is 15% to 35%
depending on b-tag class. Uncertainties of 4% (ST), 8%
(TDT), and 11% (LDT) on the normalization of b-tagged
samples are applied to account for different b-tag efficien-
cies in data and simulation. Other uncertainties affecting
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FIG. 1. The dijet invariant mass distribution of the two jets
with the highest ET in the PreTag sample. The distribution is
shown for data after NN correction of jet energies. The dijet
mass is shown for background and signal (MH ¼ 115 GeV=c2,
scaled by a factor of 1500) before and after correction.
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sample normalizations include 6% on the integrated lumi-
nosity, 1% on the trigger and lepton reconstruction effi-
ciencies [28], 1.5% on the measurement of lepton energies,
and a 50% uncertainty on the total misidentified Z esti-
mate. We include additional uncertainties on jet energies
[29] and the modeling of initial and final state radiation as
variations on the shape and normalization of the NND

output.
We calculate limits on ZH cross section based on com-

parisons of the full NND output of the b-tagged data to
expectations for signal and background for eleven Higgs
boson mass hypotheses between 100 and 150 GeV=c2. We
use a Bayesian algorithm [30] with a flat prior in the
production cross section, integrating over the priors for
the systematic uncertainties, incorporating correlated rate
and shape uncertainties, and uncorrelated bin-by-bin sta-
tistical uncertainties [31]. Systematic uncertainties reduce
the sensitivity of this search by 16%. The median of the
95% credibility level (C.L.) upper limits obtained from
1000 simulated experiments is taken as the expected 95%
C.L. upper limit. The !1! (where ! denotes the standard
deviation) and !2! expected limits are derived from the
distribution of the simulation limits at the 16th, 84th, 2nd,
and 98th percentiles of the distribution, respectively. The
observed 95% C.L. on the ZH cross section are displayed
in Fig. 3 and summarized in Table II.

In conclusion, we have searched for the SMHiggs boson
produced in association with a Z boson, where Z ! ‘þ‘#

and H ! b !b, finding no significant evidence for the pro-
cess. We set 95% C.L. upper limits on the ZH production

cross section multiplied by the H ! b !b branching ratio.
For MH ¼ 115 GeV=c2 we set (expect) a 95% C.L. upper
limit of 5.9 (6.8) times the standard model prediction. This
result is an important step forward in the search for the
Higgs boson and the source of electroweak symmetry
breaking, improving upon the previous CDF [8] observed
(expected) limits in this channel by factors of 2.2 to 3.7 (1.9
to 2.4).
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TABLE II. The 95% C.L. upper limits on the ZH production
cross section times the branching ratio for H ! b !b normalized
to the SM expectation. The assumed ZH cross section and
branching fraction for H ! b !b are 0.11 pb [32,33] and 0.73
[3] for a 115 GeV=c2 Higgs boson.

MH 100 105 110 115 120 125 130 135 140 145 150

Expected 6.7 6.4 6.3 6.8 8.5 10. 13 19 29 45 74
Observed 4.5 4.6 5.3 5.9 7.9 8.1 10 14 19 24 43
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Photon identification at D0 and applications5

dates with transverse momentum pT > 21 (20) GeV for
the highest (next-to-highest) pT photon candidate and
pseudorapidity |η| < 0.9, for which the trigger require-
ments are > 96% efficient. The minimum pT require-
ments for the two photon candidates are chosen to be
different following theoretical discussions [13, 14] and a
previous measurement [10]. The photon pT is computed
with respect to the reconstructed event primary vertex
(PV) with the highest number of associated tracks. The
PV is required to be within 60 cm of the center of the de-
tector along the beam axis. The PV has a reconstruction
efficiency of about 98% and has about 65% probability
of being the correct vertex corresponding to the hard
pp̄ → γγ +X production.
Photon candidates are formed from clusters of

calorimeter cells within a cone of radius R =
√

(∆η)2 + (∆φ)2 = 0.4 around a seed tower [16]. The
final cluster energy is then recalculated from the inner
core with R = 0.2. The photon candidates are selected
by requiring: (i) ≥ 97% of the cluster energy be deposited
in the EM calorimeter layers; (ii) the calorimeter isola-
tion I = [Etot(0.4)−EEM(0.2)]/EEM(0.2) < 0.10, where
Etot(R) [EEM(R)] is the total [EM only] energy in a cone
of radius R; (iii) the pT scalar sum of all tracks origi-
nating from the PV in an annulus of 0.05 < R < 0.4
around the EM cluster be< 1.5 GeV; and (iv) the energy-
weighted EM shower width be consistent with that ex-
pected for an electromagnetic shower. To suppress elec-
trons misidentified as photons, the EM clusters are re-
quired to not be spatially matched to significant tracker
activity, either a reconstructed track or a density of hits
in the SMT and CFT consistent with that of an elec-
tron [19]. In the following, this requirement will be re-
ferred to as the “track-match veto”.
To further suppress jets misidentified as photons, an

artificial neural network (NN) discriminant which ex-
ploits differences in tracker activity and energy deposits
in the calorimeter and in the CPS between photons and
jets is defined [1]. The NN is trained using γ and jet
pythia MC samples. The shapes of the NN output
(ONN), normalized to unit area and obtained after ap-
plying all data selection criteria, are shown in Figure
2, exhibiting a significant discrimination between pho-
tons and jets. Photon candidates satisfy the requirement
ONN > 0.3, which is ≈ 98% efficient for photons and re-
jects ≈ 40% of the jets misidentified as photons. The
ONN shape is validated in data. For photons a data sam-
ple consisting of photons radiated from charged leptons
in Z boson decays (Z → $+$−γ, $ = e, µ) [20] is used.
The MC modeling of the ONN shape for jets is validated
in a sample of photon candidates selected by inverting
the photon isolation (I > 0.07), a requirement that sig-
nificantly enriches the sample in jets. The data and MC
ONN shapes are compared in Figures 2 and 3 and found
to be in good agreement.
Finally, the two photon candidates are required to be
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FIG. 2: Comparison of the normalized ONN spectra for pho-
tons from DPPMC and Z → !+!−γ data and for misidentified
jets from dijet MC.

spatially separated from each other by a distance in η−φ
space ∆R > 0.4 and to satisfy Mγγ > pγγT . The lat-
ter requirement is satisfied by the majority (≈ 92%) of
DPP events and, together with the photon isolation re-
quirements, allows significant suppression of the contri-
bution from the fragmentation diagrams, thus restricting
the data-to-theory comparison to the region where the
theoretical calculations should have smaller uncertainties
[13].

After imposing all requirements, 10938 events with
diphoton candidates are selected in data. This sam-
ple includes instrumental background contributions from
γ+jet and dijet production, where a jet is misidentified
as a single photon as a result of fluctuations in the parton
fragmentation into a well-isolated neutral meson (π0 or η)
decaying into a final state with two or more photons. An
additional smaller background contribution results from
Z-boson/Drell-Yan production events Z/γ∗ → e+e−

(ZDY) in which both electrons are misidentified as pho-
tons.

The contribution from ZDY events is estimated us-
ing the MC simulation with pythia, normalized to the
NNLO cross section [21]. The selection efficiencies de-
termined from the MC simulation are corrected to those
measured in the data. On average, each electron has
a 2% probability of satisfying the photon selection cri-
teria, mainly due to the inefficiency of the track-match
veto requirements. The total ZDY contribution is es-
timated to be 161 ± 20 events. Backgrounds due to
γ+jet and dijet events are estimated from data by using
a 4 × 4 matrix background estimation method [1]. Af-
ter applying all of the selection criteria described above,
a tighter ONN requirement (ONN > 0.6) is used to
classify the data events into four categories, depend-
ing on whether both photon candidates, only the high-
est pT one, only the next-to-highest pT one, or nei-
ther of the two photon candidates pass (p) or fail (f)
this requirement. The corresponding number of events
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FIG. 4: The measured differential diphoton production cross sections as functions of (a)Mγγ , (b) p
γγ
T , (c)∆φγγ , and (d) | cos θ∗|.

The data are compared to the theoretical predictions from resbos, diphox, and pythia. The predictions from resbos, and
diphox use the CTEQ6.6M PDF set [12] and renormalization, factorization, and fragmentation scales µR = µF = µf = Mγγ ,
while pythia uses the Tune A settings. Theoretical predictions are obtained using the following selections: two photons with
pT > 21(20) GeV, |η| < 0.9, 30 <Mγγ< 350 GeV, Mγγ> pγγT , ∆R > 0.4, ∆φγγ > 0.5π, and Eiso

T < 2.5 GeV. The ratio of
differential cross sections between data and resbos are displayed as black points with uncertainties in the bottom plots. The
inner line for the uncertainties in data points shows the statistical uncertainty, while the outer line shows the total (statistical
and systematic added in quadrature) uncertainty after removing the 7.4% normalization uncertainty. The solid (dashed) line
shows the ratio of the predictions from diphox (pythia) to those from resbos. In the bottom plots, the scale uncertainties
are shown by dash-dotted lines and the PDF uncertainties by shaded regions.

vals. Each table is split into three sub-tables, showing
results separately for d2σ/dMγγdp

γγ
T , d2σ/dMγγd∆φγγ ,

and d2σ/dMγγd| cos θ∗|. The measured cross sections
for the pγγT , ∆φγγ , and | cos θ∗| variables in the three
mass bins are shown in Figures 5 − 7 and compared to
the theoretical predictions. These results confirm that
the largest discrepancies between data and resbos for
each of the kinematic variables originate from the lowest
Mγγ region (Mγγ < 50 GeV). As shown in Figure 1, this
is the region where the contribution from gg → γγ is
expected to be largest. The discrepancies between data
and resbos are reduced in the intermediate Mγγ region
(50 − 80 GeV), and a quite satisfactory description of

all kinematic variables is achieved for the Mγγ> 80 GeV
region, the relevant region for the Higgs boson and new
phenomena searches. However, it should be pointed out
that at the Tevatron, DPP production at high masses is
strongly dominated by qq̄ annihilation, in contrast with
the LHC, where the contribution from gg and qg initiated
process will be significant. It remains to be seen whether
the addition of NNLO corrections to resbos, as done in
[23], will improve the description of the high pγγT (low
∆φγγ) spectrum at low Mγγ.

In summary, we have presented measurements of sin-
gle and double differential cross sections for DPP pro-
duction in pp̄ collisions at

√
s = 1.96 TeV. This analysis

- Neural network for Photon Id based on 
calorimeter energy deposit and track variables 
in an isolation cone around the photon

- Used to identify and measure the diphoton+X 
cross-section

arxiv:1002.4917v3
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(b) MH = 110 GeV
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(c) MH = 120 GeV
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(d) MH = 130 GeV
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FIG. 3: MVA output distributions for MH = 100 − 150 GeV in 10 GeV intervals within [MH - 30GeV, MH + 30GeV] mass
window. The inset figures show the MVA output distributions for the signal concentrated region [0, 1] in a linear scale.
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as a solid black line while the expected limit under the background-only hypothesis is shown as a dashed red line. The green
and yellow areas correspond to 1 and 2 standard deviations (s.d.) around the expected limit.

Acknowledgments

We thank the staff at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF
(USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP
and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF
(Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany);
SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt
Foundation.

[1] ALEPH, DELPHI, L3, and OPAL Collaborations, The LEP Working Group for Higgs Boson Searches, Phys. Lett. B 565,
61 (2003).

[2] LEP Electroweak Working Group
http://lepewwg.web.cern.ch/LEPEWWG/

[3] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 104, 061803 (2010).
[4] V.M. Abazov et al. (DØ Collaboration), Phys. Rev. Lett. 104, 061804 (2010).
[5] T. Aaltonen et al. (CDF and DØ Collaborations), Phys. Rev. Lett. 104, 061802 (2010).
[6] T. Aaltonen et al. (CDF and DØ Collaborations), FERMILAB-CONF-10-257-E (2010).
[7] S. Mrenna and J. Wells, Phys. Rev. D 63, 015006 (2000).
[8] DØ Collaboration, ”Search for Light Higgs Boson in γγ+X Final State with the DØ Detector at

√
s = 1.96 TeV”, DØ

Note 5858-CONF (2007).
[9] A. Hoecker et al., TMVA 4 Toolkit for Multivariate Data Analysis with ROOT Users Guide, arXiv:physics/0703039 (2007).

[10] V. M. Abazov et al., Nucl. Instrum. Meth. A 565, 463 (2006).
[11] The polar angle θ and the azimuthal angle φ are defined with respect to the positive z axis, which is along the proton beam

direction. Pseudorapidity is defined as η = ln[tan(θ/2)]. Also, ηdet and φdet are the pseudorapidity and the azimuthal angle
measured with respect to the center of the detector.
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the diphoton continuum (+30%)
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of the Higgs boson production cross section and the H→ W
+

W
−

branching fraction, σH ×
BR(H → W

+
W

− → 2�2ν), with respect to the SM expectation (σ95%
/σSM

). While two dif-

ferent statistical methods are used, both use the same likelihood function from the expected

number of observed events modeled as a Poisson random variable whose mean value is the

sum of the contributions from signal and background processes. The first method, known

as CLs, is based on the modified frequentist approach [36, 37], while the second one is based

on Bayesian inference [38]. Both methods account for systematic uncertainties. Although not

identical, the upper limits obtained from both methods are very similar. The 95% observed

and expected median C.L. upper limits computed with the CLs method are shown in Figure 4.

Results are reported for both the cut-based and the BDT approach. The bands represent the 1σ
and 2σ probability intervals around the expected limit. The a posteriori probability intervals

on the cross section are constrained by the a priori minimal assumption that the signal and

background cross sections are positive definite.

The cut-based analysis excludes the presence of a Higgs boson with mass in the range [132 -

238] GeV/c2
at 95% C.L., while the expected exclusion limit in the hypothesis of background

only is [129 - 236] GeV/c2
. With the multivariate analysis, the presence of a Higgs boson with

mass in the range [129 - 270] GeV/c2
is excluded at 95% C.L., while the expected exclusion limit

in the background only hypothesis is in the range [127 - 270] GeV/c2
. The observed (expected)

upper limits are about 0.9 (0.7) times the SM expectation for mH = 130 GeV/c2
. The excess

of events observed for hypothesised Higgs boson masses at the low end of the explored range

makes the observed limits weaker than the expected ones. To ascertain the origin of this excess,

more data are required. The fermiophobic Higgs hypothesis was also considered, in which the

Higgs boson is produced either via the VBF process or the associated production with a W or Z

boson. The presence of a fermiophobic Higgs boson with mass in the [145 - 195] GeV/c2
range

at 95% C.L. is excluded.
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Figure 4: 95% expected and observed C.L. upper limits on the cross section times branching

ratio, σH×BR(H → W
+

W
− → 2�2ν), relative to the SM value using cut-based (a) and multi-

variate BDT (b) event selections. Results are obtained using the CLs approach.

8 Conclusions
A search for a Higgs boson decaying to W

+
W

−
in pp collisions at

√
s = 7 TeV is performed

using a data sample corresponding to an integrated luminosity of 4.6 fb
−1

. No significant ex-

H→WW→llνν searches in CMS

6 4 H → W
+

W
− Event Selection
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Figure 3: BDT classifier outputs for Higgs signal and background events for mH=130 GeV/c2

in the 0-jet bin same flavor final state (a), 1-jet bin same flavor final state (b), 0-jet bin opposite

flavor final state (c), and 1-jet bin opposite flavor final state (d), after the W
+

W
−

selection. The

area marked as WW corresponds to non-resonant W
+

W
−

production.

- 3 channels : 0-jet, 1-jet, 2-jet

- Electron identification with a multivariate technique : 50% 
more background rejection for the same signal efficiency

- Boosted decision tree in 0-jet and 1-jet channels : kinematic 
variables

- Limits improved by using BDT
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H→bb searches in CMS

14 7 Results
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Figure 3: Distributions of BDT output for W(µν)H(top left) and W(eν)H(top right), Z(µµ)H
(middle left) and Z(ee)H (middle right), and Z(νν)H (bottom) for data (points with errors), all

backgrounds, and signal after all selection criteria have been applied.
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Figure 4: Expected and observed 95% CL combined upper limits on the ratio of VHbb produc-
tion for the BDT (left) and M(jj)(right) analyses. The median expected limit and the 1- and 2-σ
bands are obtained with the LHC CLs method as implemented in RooStats, as are the observed
limits at each mass point.

Table 14: Expected and observed 95% CL upper limits on the production of a SM Higgs boson
in association with W and Z bosons and decaying to b quarks relative to the expected cross
section. The BDT analyses perform 2–20% better than the M(jj) analyses, depending on the
mass point.

BDT Analysis M(jj)Analysis
CLs CLs

MH( GeV) Exp Obs Exp Obs
110 2.74 3.14 3.05 3.44
115 3.12 5.18 3.21 5.56
120 3.56 4.38 4.14 6.07
125 4.27 5.72 4.74 6.31
130 5.28 9.00 6.42 10.5
135 6.74 7.53 7.67 8.92

- Searches for VH, H→bb
- 5 channels : W→eν,μν, Z→ee,μμ, Z→νν

- B-tagging selection on a likelihood 
discriminant (track impact parameter + 
secondary vertices information)

- Boosted decision trees for the kinematics

CMS-PAS-HIG-11-031
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H→γγ searches in CMS
7
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Figure 1: Background model fit to the mγγ distribution for the combined data in all 4 event

classes, together with a simulated signal (mH=120 GeV/c
2
). The magnitude of the signal is what

would be expected if its cross section were 5 times the SM expectation.

Given the narrowness of the Higgs mass peak which has a resolution approaching 1 GeV/c
2

in

the classes with best resolution, the search is carried out in steps of 0.5 GeV/c
2
.

Table 3 lists the sources of systematic uncertainty that have been taken into account in the

evaluation of the limits, together with the magnitude of the variation of the source that has

been applied.

The limit set on the cross section of a Higgs boson decaying to two photons using the frequen-

tist CLS computation and an unbinned evaluation of the likelihood, is shown in Fig. 2. Figure 3

shows the limit relative to the SM expectation, where the theoretical uncertainties on the ex-

pected cross sections from the different production mechanisms are individually included as

systematic uncertainties in the limit setting procedure. The fluctuations of the observed limit

about the expected limit are consistent with statistical fluctuations to be expected in scanning

the mass range. It has also been verified that the shape of the observed limit obtained is un-

changed if the choice of background model fitting function is changed over a wide range of

functional forms, although the expected limit improves by as much as 10% if functions with

less free parameters than the 5
th

order polynomial are used.

The results obtained from the binned evaluation of the likelihood are in excellent agreement

with the results shown in Figs. 2 and 3.

Figure 4 shows the local p-value calculated, using the asymptotic approximation, at 0.5 GeV/c
2

intervals in the mass range 110< mH < 150 GeV/c
2
. The local p-value quantifies the proba-

bility for the background to produce a fluctuation as large as observed, and assumes that the

relative signal strength between the event classes follows the Monte Carlo signal model for the

Standard Model. The local p-value corresponding to the largest upwards fluctuation of the

observed limit, at 123.5 GeV/c
2
, has been computed to be 9.6×10

−3
(2.34σ) in the asymptotic
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Figure 2: Exclusion limit on the cross section of a SM Higgs boson decaying into two photons

as a function of the boson mass.
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Figure 3: Exclusion limit on cross section of a SM Higgs boson decaying into two photons

relative to the SM cross section, as a function of the boson mass.- Hard interaction vertex identified with a BDT using diphoton kinematics and 
track variables

- Photon energy estimated with a BDT regression from geometry and energy 
deposit variables (10% improvement on the limit)
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8 4 Results
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Figure 2: The combined 95% C.L. upper limits on the signal strength modifier µ = σ/σSM as

a function of the SM Higgs boson mass in the range 110–600 GeV/c2
. The observed limits are

shown by the solid symbols and the black line. The dashed line indicates the median expected

limit on µ for the background-only hypothesis, while the green (yellow) bands indicate the

ranges that are expected to contain 68% (95%) of all observed limit excursions from the median.

Combination of all channels in CMS
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Figure 3: The observed 95% C.L. upper limits on the signal strength modifier µ = σ/σSM as

a function of the SM Higgs boson mass in the range 110–600 GeV/c2
for the five Higgs boson

decay modes and their combination. The limits shown on this plot are calculated using the

asymptotic formula for the CLs method [24].- Combination can be seen as a grand multivariate analysis
- Limits are set with CLs method
- Exclusion at 95% confidence level : 127-600 GeV
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Plenty of multivariate methods...

Example of MVA methods :
- Rectangular cut optimization
- Fisher
- Likelihood
- Neural network
- Decision tree
- Support Vector Machine
- ...

Characteristics :
- Level of complexity and transparency
- Performance in term of background rejection
- Way of dealing with non-linear correlations
- Speed of training
- Robustness while increasing the number of input variables
- Robustness against overtraining

24



Rectangular cuts

Define the signal region :
! a1 < x1 < a2,
! b1 < x2 < b2
! ...

25

- Simplest multivariate method, very intuitive
- All HEP analyses are using rectangular cuts, not 
always completely optimized

Rectangular cuts optimization :
- Grid search, Monte-Carlo sampling 
- Genetic algorithm
- Simulated annealing

Characteristics :
- Difficult to discriminate signal from background if 

non-linear correlations
- Optimization difficult to handle with high number of 

variables



Fisher discriminant

Fisher method :
- Cut on a linear combination of the input 

variables
! y < a.x1 + b.x2
- This corresponds to an hyper-plan in the 

variable phase-space
- Very efficient if linear correlations

- Again, difficult to handle non-linear correlations
- More easily trained than rectangular cuts

26



Likelihood estimator

- The likelihood ratio is defined by :

                                                   

is the product of the probability function for each variables.

- Optimal when no correlation between the variables
- This likelihood method does not take into account the correlations and is 

therefore sub-optimal in presence of correlations
- Refinements exist to take into account the correlations 

27

62 8 The TMVA Methods

Option Array Default Predefined Values Description

TransformOutput – False – Transform likelihood output by inverse

sigmoid function

Option Table 11: Configuration options reference for MVA method: Likelihood. Values given are defaults. If

predefined categories exist, the default category is marked by a ’�’. The options in Option Table 9 on page 58

can also be configured.

a true multivariate combination of the information will be rewarding.

8.2 Projective likelihood estimator (PDE approach)

The method of maximum likelihood consists of building a model out of probability density functions

(PDF) that reproduces the input variables for signal and background. For a given event, the

likelihood for being of signal type is obtained by multiplying the signal probability densities of all

input variables, which are assumed to be independent, and normalising this by the sum of the

signal and background likelihoods. Because correlations among the variables are ignored, this PDE

approach is also called “naive Bayes estimator”, unlike the full multidimensional PDE approaches

such as PDE-range search, PDE-foam and k-nearest-neighbour discussed in the subsequent sections,

which approximate the true Bayes limit.

8.2.1 Booking options

The likelihood classifier is booked via the command:

factory->BookMethod( Types::kLikelihood, "Likelihood", "<options>" );

Code Example 32: Booking of the (projective) likelihood classifier: the first argument is the predefined

enumerator, the second argument is a user-defined string identifier, and the third argument is the configuration

options string. Individual options are separated by a ’:’. See Sec. 3.1.5 for more information on the booking.

The likelihood configuration options are given in Option Table 11.

8.2.2 Description and implementation

The likelihood ratio yL(i) for event i is defined by

yL(i) =
LS(i)

LS(i) + LB(i)
, (34)

8.2 Projective likelihood estimator (PDE approach) 63

where

LS(B)(i) =
nvar�

k=1

pS(B),k(xk(i)) , (35)

and where pS(B),k is the signal (background) PDF for the kth input variable xk. The PDFs are
normalised

+∞�

−∞

pS(B),k(xk)dxk = 1 , ∀k. (36)

It can be shown that in absence of model inaccuracies (such as correlations between input variables
not removed by the de-correlation procedure, or an inaccurate probability density model), the
ratio (34) provides optimal signal from background separation for the given set of input variables.

Since the parametric form of the PDFs is generally unknown, the PDF shapes are empirically
approximated from the training data by nonparametric functions, which can be chosen individually
for each variable and are either polynomial splines of various degrees fitted to histograms or unbinned
kernel density estimators (KDE), as discussed in Sec. (5).

A certain number of primary validations are performed during the PDF creation, the results of
which are printed to standard output. Among these are the computation of a χ2 estimator between
all nonzero bins of the original histogram and its PDF, and a comparison of the number of outliers
(in sigmas) found in the original histogram with respect to the (smoothed) PDF shape, with the
statistically expected one. The fidelity of the PDF estimate can be also inspected visually by
executing the macro likelihoodrefs.C (cf. Table 4).

Transforming the likelihood output

If a data-mining problem offers a large number of input variables, or variables with excellent sepa-
ration power, the likelihood response yL is often strongly peaked at 0 (background) and 1 (signal).
Such a response is inconvenient for the use in subsequent analysis steps. TMVA therefore allows to
transform the likelihood output by an inverse sigmoid function that zooms into the peaks

yL(i) −→ y�L(i) = −τ−1 ln
�
y−1
L − 1

�
, (37)

where τ = 15 is used. Note that y�L(i) is no longer contained within [0, 1] (see Fig. 11). The
transformation (37) is enabled (disabled) with the booking option TransformOutput=True(False).

8.2.3 Variable ranking

The present likelihood implementation does not provide a ranking of the input variables.



Neural network

- Most commonly used : the multi-layer perceptron
- Composed of neurons taking as input a linear combination of the previous 

neuron outputs
- Activation function (usually tanh) transforms the linear combination
- Weights for each neurons are found during the training phase by minimizing the 

error on the neural network output

28

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 95
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Figure 15: Multilayer perceptron with one hidden layer.

8.10.2 Description and implementation

The behaviour of an artificial neural network is determined by the layout of the neurons, the weights
of the inter-neuron connections, and by the response of the neurons to the input, described by the
neuron response function ρ.

Multilayer Perceptron

While in principle a neural network with n neurons can have n2 directional connections, the com-
plexity can be reduced by organising the neurons in layers and only allowing direct connections from
a given layer to the following layer (see Fig. 15). This kind of neural network is termed multi-layer
perceptron; all neural net implementations in TMVA are of this type. The first layer of a multilayer
perceptron is the input layer, the last one the output layer, and all others are hidden layers. For
a classification problem with nvar input variables the input layer consists of nvar neurons that hold
the input values, x1, . . . , xnvar , and one neuron in the output layer that holds the output variable,
the neural net estimator yANN.

For a regression problem the network structure is similar, except that for multi-target regression
each of the targets is represented by one output neuron. A weight is associated to each directional
connection between the output of one neuron and the input of another neuron. When calculating
the input value to the response function of a neuron, the output values of all neurons connected to
the given neuron are multiplied with theses weights.

- Neural networks are universal 
approximators : takes advantage of 
correlations

- Quite stable against overtraining and 
against increasing number of 
variables



Decision tree

- A decision tree is a binary tree : a sequence of cuts paving the phase-space of 
the input variables

- Repeated yes/no decisions on each variables are taken for an event until a 
stop criterion is fulfilled

- Trained to maximize the purity of signal nodes (or the impurity of background 
nodes)

29

8.12 Boosted Decision and Regression Trees 105

Figure 18: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using
the discriminating variables xi is applied to the data. Each split uses the variable that at this node gives the
best separation between signal and background when being cut on. The same variable may thus be used at
several nodes, while others might not be used at all. The leaf nodes at the bottom end of the tree are labeled
“S” for signal and “B” for background depending on the majority of events that end up in the respective
nodes. For regression trees, the node splitting is performed on the variable that gives the maximum decrease
in the average squared error when attributing a constant value of the target variable as output of the node,
given by the average of the training events in the corresponding (leaf) node (see Sec. 8.12.3).

factory->BookMethod( Types::kBDT, "BDT", "<options>" );

Code Example 46: Booking of the BDT classifier: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string.
Individual options are separated by a ’:’. See Sec. 3.1.5 for more information on the booking.

Several configuration options are available to customize the BDT classifier. They are summarized
in Option Tables 21 and 22 and described in more detail in Sec. 8.12.2.

8.12.2 Description and implementation

Decision trees are well known classifiers that allow a straightforward interpretation as they can be
visualized by a simple two-dimensional tree structure. They are in this respect similar to rectangular
cuts. However, whereas a cut-based analysis is able to select only one hypercube as region of phase

- Decision trees are extremely 
sensitive to the training samples, 
therefore to overtraining

- To stabilize their performance, one 
uses different techniques :

- Boosting
- Bagging
- Random forests



Support Vector Machine

- Idea : build a hyperplane that separate signal and background vectors (events) 
using only a subset of all training vectors (support vectors)

- Position of the hyperplane found by maximizing the margin between it and the 
support vectors

- Higher dimensions spaces are used by non-linear transformation, using kernel 
functions such as the gaussian basis

30

8.11 Support Vector Machine (SVM) 101

Figure 17: Hyperplane classifier in two dimensions. The vectors (events) x1−4 define the hyperplane and

margin, i.e., they are the support vectors.

8.11.2 Description and implementation

A detailed description of the SVM formalism can be found, for example, in Ref. [42]. Here only a

brief introduction of the TMVA implementation is given.

Linear SVM

Consider a simple two-class classifier with oriented hyperplanes. If the training data is linearly

separable, a vector-scalar pair (�w, b) can be found that satisfies the constraints

yi(�xi · �w + b)− 1 ≥ 0 , ∀i , (83)

where �xi are the input vectors, yi the desired outputs (yi = ±1), and where the pair (�w, b) defines

a hyperplane. The decision function of the classifier is f(�xi) = sign(�xi · �w + b), which is +1 for all

points on one side of the hyperplane and −1 for the points on the other side.

Intuitively, the classifier with the largest margin will give better separation. The margin for this

linear classifier is just 2/|�w|. Hence to maximise the margin, one needs to minimise the cost function
W = |�w|2/w with the constraints from Eq. (83).

At this point it is beneficial to consider the significance of different input vectors �xi. The training

events lying on the margins, which are called the support vectors (SV), are the events that contribute

to defining the decision boundary (see Fig. 17). Hence if the other events are removed from the

training sample and the classifier is retrained on the remaining events, the training will result in

- SVM can be competitive with NN and BDT 
but is often less discriminant : often data 
are non-separable, therefore sensitive to all 
the SVM parameters

- In some cases this method performs very 
well



Training and application

Training / test samples
- For all multivariate methods, two samples are 

used :
- Training sample
- Test sample

- This is mandatory to check that the training has 
converged to a solution which does not depend 
on the statistical fluctuations of the training 
sample

- Generally speaking, MVA should be applied (or 
tested) in events where the response is not 
known

- Training is time-consuming, especially while 
increasing the number of variables (and 
depending on the method)

- Application is usually faster : it uses a set of 
weights used in the MVA output computation
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Which method to choose ?

From TMVA manual
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MVA METHOD

CRITERIA Cuts Likeli-
hood

PDE-
RS /
k-NN

PDE-
Foam

H-
Matrix

Fisher
/ LD

MLP BDT Rule-
Fit

SVM

Perfor-
No or linear
correlations

� �� � � � �� �� � �� �

mance Nonlinear
correlations

◦ ◦ �� �� ◦ ◦ �� �� �� ��

Training ◦ �� �� �� �� �� � ◦ � ◦Speed Response �� �� ◦ � �� �� �� � �� �

Robust- Overtraining �� � � � �� �� � ◦ � ��
ness Weak variables �� � ◦ ◦ �� �� � �� � �

Curse of dimensionality ◦ �� ◦ ◦ �� �� � � �

Transparency �� �� � � �� �� ◦ ◦ ◦ ◦

Table 6: Assessment of MVA method properties. The symbols stand for the attributes “good” (��), “fair”
(�) and “bad” (◦). “Curse of dimensionality” refers to the “burden” of required increase in training statistics
and processing time when adding more input variables. See also comments in the text. The FDA method is
not listed here since its properties depend on the chosen function.

10 Which MVA method should I use for my problem?

There is obviously no generally valid answer to this question. To guide the user, we have attempted
a coarse assessment of various MVA properties in Table 6. Simplicity is a virtue, but only if it is not
at the expense of significant loss of discrimination power. Robustness with respect to overtraining
could become an issue when the training sample is scarce. Some methods require more attention
than others in this regard. For example, boosted decision trees are particularly vulnerable to
overtraining if used without care.37 To circumvent overtraining a problem-specific adjustment of
the pruning strength parameter is required.

To assess whether a linear discriminant analysis (LDA) could be sufficient for a classification (re-
gression) problem, the user is advised to analyse the correlations among the discriminating variables
(among the variables and regression target) by inspecting scatter and profile plots (it is not enough
to print the correlation coefficients, which by definition are linear only). Using an LDA greatly
reduces the number of parameters to be adjusted and hence allow smaller training samples. It
usually is robust with respect to generalisation to larger data samples. For moderately intricate
problems, the function discriminant analysis (FDA) with some added nonlinearity may be found
sufficient. It is always useful to cross-check its performance against several of the sophisticated
nonlinear methods to see how much can be gained over the use of the simple and very transparent
FDA.

37However, experience shows that the BDT performance is amazingly robust – even for strongly overtrained decision
trees.


