
1

Statistical Tools in Collider Experiments

Multivariate analysis
in high energy physics

Lecture 2

Pauli Lectures - 07/02/2012

Nicolas Chanon - ETH Zürich

Outline

2

1.Introduction
2.Multivariate methods
3.Optimization of MVA methods
4.Application of MVA methods in HEP
5.Understanding Tevatron and LHC results

Lecture 2. Multivariate methods

3

Multivariate analysis : Definitions

MultiVariate Analysis :
- Set of statistical analysis methods that simultaneously analyze multiple
measurements (variables) on the object studied
- Variables can be dependent or correlated in various ways

Classification / regression :
- Classification : discriminant analysis to separate classes of events, given

already known results on a training sample
- Regression : analysis which provides an output variable taken into account the
correlations of the input variables

Statistical learning :
- Supervised learning : the multivariate method is trained over a sample were

the result is known (e.g. Monte-Carlo simulation of signal and background)
- Unsupervised learning : no prior knowledge is required. The algorithm will

cluster events in an optimal way

4

Event classification

- Focus here on supervised learning for classification.
- Use case in particle physics : signal/background discrimination

- Assume we have two populations (signal and background) and two variables

5

- How to decorrelate, what decision
boundary (on X1 and X2) to
choose, to decide if an event is
signal or background ?

Event classification

- Possible solutions : rectangular cuts, Fisher, non-linear contour

6

Rectangular cuts Linear (Fisher)
Non-linear
(BDT, NN...)

Regression

7

- Assume we have one set of measurements.
- How to approximate the law underlying such measurement ?
- If the value of the function in each point is known, this is an example of

supervised regression.
- If F(X) is not known this is an example of unsupervised regression

Plenty of multivariate methods...

Example of MVA methods :
- Rectangular cut optimization
- Fisher
- Likelihood
- Neural network
- Decision tree
- Support Vector Machine
- ...

Characteristics :
- Level of complexity and transparency
- Performance in term of background rejection
- Way of dealing with non-linear correlations
- Speed of training
- Robustness while increasing the number of input variables
- Robustness against overtraining

8

Rectangular cuts

Define the signal region :
! a1 < x1 < a2,
! b1 < x2 < b2
! ...

9

- Simplest multivariate method, very intuitive
- All HEP analyses are using rectangular cuts, not
always completely optimized

Rectangular cuts optimization :
- Grid search, Monte-Carlo sampling
- Genetic algorithm
- Simulated annealing

Characteristics :
- Difficult to discriminate signal from background if

too much correlations
- Optimization difficult to handle with high number of

variables

Cut optimization

How to find the best set of cuts for a given criterion ?

Grid search
- Try N points (usually very large) of the phase-space

equally spaced in each dimensions
=> Impossible with high number of variables (too much
CPU time)

Monte-Carlo sampling
- Try N points randomly chosen in the phase space
=> Usually performs better, but still non optimal

Both are good global minimum finder but have poor
accuracy

10

26 26 Top Workshop, LPSC, Oct 18–20, 2007 A. Hoecker: Multivariate Analysis with TMVA 26 A. Hoecker ! Multivariate Data Analysis Karlsruhe, Oct 12, 2009

Quadratic Newton

Minimisation Techniques

Grid search Simulated Annealing

Source: http://www-esd.lbl.gov/iTOUGH2/Minimization/minalg.html

Examples of criterion :
- Maximize the signal efficiency for a given background rejection
- Maximize the significance

Curse of dimensionality

Grid search and Monte-Carlo sampling suffer from the curse of
dimensionality :

- For one variables, trying 100 working points is easy

- For two variables, 100 working points will lead to not well covered phase-space
because each points have more distance between them

- 100x100 points should be used

- Increasing number of variables will lead this algorithm to be impossible in
practice

11
Figure 1: An illustration of the curse of dimensionality

How avoid the “curse of dimensionality”

Several high dimensional data analysis techniques have been proposed to deal with the

“curse of dimensionality”, e.g. SIR and PHD (Li, 2000). In the words of Xia, Tong, Li and

Zhu (2002), there are essentially two approaches: function approximation and dimension

reduction.

• Function approximation

[1] Additive Model: Hastie and Tibshirani (1986)

[2] Projection Pursuit Regression: Friedman and Stuetzle (1981)

• Dimension reduction

[1] Sliced Inverse Regression Method (SIR): Li (1991)

[2] Single Index Model (SIM)

o Average Derivative Estimation (ADE): Hardle and Stoker (1989)

o Density Weighted ADE: Powell, Stock and Stoker (1989)

o Kernel Smoothing in SIM: Hardle, Hall and Ichimura (1993)

o Minimum Average Variance Estimation (MAVE): Xia, Tong, Li and Zhu (2002)

[3] Single Index Prediction Model (SIPM): Wang and Yang (2006)

2

Optimization methods

Quadratic interpolation
- Compute the function (say the significance) in 3 points.

Interpolate with a quadratic function and go to the minimum.
Repeat the operation.

=> Problem if no minimum but a maximum is found (work around
exist)

Gradient descent
- At each point, go in the gradient direction. This should lead to a

minimum.
=> This method is not the fastest since the gradient direction at
each step is not always the direction of the minimum.

Both methods are good to find local minima

- MINUIT package uses a combination : gradient-driven search,
using variable metric, can use quadratic Newton-type solution

- Other methods exist : genetic algorithms, simulated
annealing 12

26 26 Top Workshop, LPSC, Oct 18–20, 2007 A. Hoecker: Multivariate Analysis with TMVA 26 A. Hoecker ! Multivariate Data Analysis Karlsruhe, Oct 12, 2009

Quadratic Newton

Minimisation Techniques

Grid search Simulated Annealing

Source: http://www-esd.lbl.gov/iTOUGH2/Minimization/minalg.html

26 26 Top Workshop, LPSC, Oct 18–20, 2007 A. Hoecker: Multivariate Analysis with TMVA 26 A. Hoecker ! Multivariate Data Analysis Karlsruhe, Oct 12, 2009

Quadratic Newton

Minimisation Techniques

Grid search Simulated Annealing

Source: http://www-esd.lbl.gov/iTOUGH2/Minimization/minalg.html

Neural network

- Most commonly used : the multi-layer perceptron
- Composed of neurons taking as input a linear combination of the previous

neuron outputs
- Activation function (usually tanh) transforms the linear combination
- Weights for each neurons are found during the training phase by minimizing

the error on the neural network output

13

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 95

1x

2x

3x

11w
1

12w
1

y21

y22

y23

y24

y25

y13

y11

y12

y14

y31

11w
2

51w
2

01w
2

05w
1

45w
14x

Input Layer Output LayerHidden Layer

Bias

Bias

yANN

1

1

Figure 15: Multilayer perceptron with one hidden layer.

8.10.2 Description and implementation

The behaviour of an artificial neural network is determined by the layout of the neurons, the weights
of the inter-neuron connections, and by the response of the neurons to the input, described by the
neuron response function ρ.

Multilayer Perceptron

While in principle a neural network with n neurons can have n2 directional connections, the com-
plexity can be reduced by organising the neurons in layers and only allowing direct connections from
a given layer to the following layer (see Fig. 15). This kind of neural network is termed multi-layer
perceptron; all neural net implementations in TMVA are of this type. The first layer of a multilayer
perceptron is the input layer, the last one the output layer, and all others are hidden layers. For
a classification problem with nvar input variables the input layer consists of nvar neurons that hold
the input values, x1, . . . , xnvar , and one neuron in the output layer that holds the output variable,
the neural net estimator yANN.

For a regression problem the network structure is similar, except that for multi-target regression
each of the targets is represented by one output neuron. A weight is associated to each directional
connection between the output of one neuron and the input of another neuron. When calculating
the input value to the response function of a neuron, the output values of all neurons connected to
the given neuron are multiplied with theses weights.

- Neural networks are universal
approximators : takes advantage of
correlations

- Quite stable against overtraining and
against increasing number of
variables

Neural network : structure

14

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 95

1x

2x

3x

11w
1

12w
1

y21

y22

y23

y24

y25

y13

y11

y12

y14

y31

11w
2

51w
2

01w
2

05w
1

45w
14x

Input Layer Output LayerHidden Layer

Bias

Bias

yANN

1

1

Figure 15: Multilayer perceptron with one hidden layer.

8.10.2 Description and implementation

The behaviour of an artificial neural network is determined by the layout of the neurons, the weights
of the inter-neuron connections, and by the response of the neurons to the input, described by the
neuron response function ρ.

Multilayer Perceptron

While in principle a neural network with n neurons can have n2 directional connections, the com-
plexity can be reduced by organising the neurons in layers and only allowing direct connections from
a given layer to the following layer (see Fig. 15). This kind of neural network is termed multi-layer
perceptron; all neural net implementations in TMVA are of this type. The first layer of a multilayer
perceptron is the input layer, the last one the output layer, and all others are hidden layers. For
a classification problem with nvar input variables the input layer consists of nvar neurons that hold
the input values, x1, . . . , xnvar , and one neuron in the output layer that holds the output variable,
the neural net estimator yANN.

For a regression problem the network structure is similar, except that for multi-target regression
each of the targets is represented by one output neuron. A weight is associated to each directional
connection between the output of one neuron and the input of another neuron. When calculating
the input value to the response function of a neuron, the output values of all neurons connected to
the given neuron are multiplied with theses weights.

Input variables

Output variable

Weights used for the linear combination

Hidden layer
Activation
functions

Multi-layer
perceptron :
most popular neural
network

- Here : only one
hidden layer

Neural network : structure

Given input values for the variables, how to compute the output ?

- Start from a set of input variables fed to the input layer

- For each neuron in the hidden layer :
- Compute a weighted sum of the input variables
(linear combination) fed as input to the hidden neuron

- Transform the input with an activation function :
 usually tanh or sigmoid

- If there is more hidden layers, repeat the operation for each neuron of the new
hidden layer, taken as input the output of the previous layer

- The output layer performs a weighted sum
 of the previous hidden layer output 15

96 8 The TMVA Methods

ylj

wl!11j
wl!12j..

.
yl!12
yl!11

wl!1njyl!1n

!

Output

Input

"

Figure 16: Single neuron j in layer � with n input connections. The incoming connections carry a weight of

w(l−1)
ij .

Neuron response function

The neuron response function ρ maps the neuron input i1, . . . , in onto the neuron output (Fig. 16).

Often it can be separated into a Rn �→ R synapse function κ, and a R �→ R neuron activation
function α, so that ρ = α ◦ κ. The functions κ and α can have the following forms:

κ : (y(�)
1 , .., y(�)

n |w(�)
0j , .., w(�)

nj) →

w(�)
0j +

n�
i=1

y(�)
i w(�)

ij Sum,

w(�)
0j +

n�
i=1

�
y(�)

i w(�)
ij

�2
Sum of squares,

w(�)
0j +

n�
i=1

|y(�)
i w(�)

ij | Sum of absolutes,

(71)

α : x →

x Linear,

1

1 + e−kx Sigmoid,

ex − e−x

ex
+ e−x Tanh,

e−x2/2 Radial.

(72)

8.10.3 Network architecture

The number of hidden layers in a network and the number of neurons in these layers are configurable

via the option HiddenLayers. For example the configuration "HiddenLayers=N-1,N+10,3" creates

a network with three hidden layers, the first hidden layer with nvar − 1 neurons, the second with

nvar + 10 neurons, and the third with 3 neurons.

When building a network two rules should be kept in mind. The first is the theorem by Weierstrass,

which if applied to neural nets, ascertains that for a multilayer perceptron a single hidden layer is

sufficient to approximate a given continuous correlation function to any precision, provided that a

sufficiently large number of neurons is used in the hidden layer. If the available computing power

and the size of the training data sample suffice, one can increase the number of neurons in the

hidden layer until the optimal performance is reached.

96 8 The TMVA Methods

ylj

wl!11j
wl!12j..

.
yl!12
yl!11

wl!1njyl!1n

!

Output

Input

"

Figure 16: Single neuron j in layer � with n input connections. The incoming connections carry a weight of

w(l−1)
ij .

Neuron response function

The neuron response function ρ maps the neuron input i1, . . . , in onto the neuron output (Fig. 16).

Often it can be separated into a Rn �→ R synapse function κ, and a R �→ R neuron activation
function α, so that ρ = α ◦ κ. The functions κ and α can have the following forms:

κ : (y(�)
1 , .., y(�)

n |w(�)
0j , .., w(�)

nj) →

w(�)
0j +

n�
i=1

y(�)
i w(�)

ij Sum,

w(�)
0j +

n�
i=1

�
y(�)

i w(�)
ij

�2
Sum of squares,

w(�)
0j +

n�
i=1

|y(�)
i w(�)

ij | Sum of absolutes,

(71)

α : x →

x Linear,

1

1 + e−kx Sigmoid,

ex − e−x

ex
+ e−x Tanh,

e−x2/2 Radial.

(72)

8.10.3 Network architecture

The number of hidden layers in a network and the number of neurons in these layers are configurable

via the option HiddenLayers. For example the configuration "HiddenLayers=N-1,N+10,3" creates

a network with three hidden layers, the first hidden layer with nvar − 1 neurons, the second with

nvar + 10 neurons, and the third with 3 neurons.

When building a network two rules should be kept in mind. The first is the theorem by Weierstrass,

which if applied to neural nets, ascertains that for a multilayer perceptron a single hidden layer is

sufficient to approximate a given continuous correlation function to any precision, provided that a

sufficiently large number of neurons is used in the hidden layer. If the available computing power

and the size of the training data sample suffice, one can increase the number of neurons in the

hidden layer until the optimal performance is reached.

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 97

It is likely that the same performance can be achieved with a network of more than one hidden
layer and a potentially much smaller total number of hidden neurons. This would lead to a shorter
training time and a more robust network.

8.10.4 Training of the neural network

Back-propagation (BP)

The most common algorithm for adjusting the weights that optimise the classification performance
of a neural network is the so-called back propagation. It belongs to the family of supervised learning
methods, where the desired output for every input event is known. Back propagation is used by all
neural networks in TMVA. The output of a network (here for simplicity assumed to have a single
hidden layer with a Tanh activation function, and a linear activation function in the output layer)
is given by

yANN =
nh�

j=1

y(2)
j w(2)

j1 =
nh�

j=1

tanh

�
nvar�

i=1

xiw
(1)
ij

�
· w(2)

j1 , (73)

where nvar and nh are the number of neurons in the input layer and in the hidden layer, respectively,
w(1)

ij is the weight between input-layer neuron i and hidden-layer neuron j, and w(2)
j1 is the weight

between the hidden-layer neuron j and the output neuron. A simple sum was used in Eq. (73) for
the synapse function κ.

During the learning process the network is supplied with N training events xa = (x1, . . . , xnvar)a,
a = 1, . . . , N . For each training event a the neural network output yANN,a is computed and compared
to the desired output ŷa ∈ {1, 0} (in classification 1 for signal events and 0 for background events).
An error function E, measuring the agreement of the network response with the desired one, is
defined by

E(x1, . . . ,xN |w) =
N�

a=1

Ea(xa|w) =
N�

a=1

1
2

(yANN,a − ŷa)2 , (74)

where w denotes the ensemble of adjustable weights in the network. The set of weights that
minimises the error function can be found using the method of steepest or gradient descent, provided
that the neuron response function is differentiable with respect to the input weights. Starting from
a random set of weights w(ρ) the weights are updated by moving a small distance in w-space into
the direction −∇wE where E decreases most rapidly

w(ρ+1) = w(ρ) − η∇wE , (75)

where the positive number η is the learning rate.

The weights connected with the output layer are updated by

∆w(2)
j1 = −η

N�

a=1

∂Ea

∂w(2)
j1

= −η
N�

a=1

(yANN,a − ŷa) y(2)
j,a , (76)

Neural network : training

How to compute the weights ?
- By minimization of the error, defined as :

Where yANN is the output and ŷ is the desired response : -1 for background, +1
for signal.

Remember that we have :

We will minimize the error using the gradient descent method : this is called the
back-propagation of errors :

Weights connected to the output layer are updated by :

And weights connected to the hidden layer are therefore updated with :

16

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 97

It is likely that the same performance can be achieved with a network of more than one hidden
layer and a potentially much smaller total number of hidden neurons. This would lead to a shorter
training time and a more robust network.

8.10.4 Training of the neural network

Back-propagation (BP)

The most common algorithm for adjusting the weights that optimise the classification performance
of a neural network is the so-called back propagation. It belongs to the family of supervised learning
methods, where the desired output for every input event is known. Back propagation is used by all
neural networks in TMVA. The output of a network (here for simplicity assumed to have a single
hidden layer with a Tanh activation function, and a linear activation function in the output layer)
is given by

yANN =
nh�

j=1

y(2)
j w(2)

j1 =
nh�

j=1

tanh

�
nvar�

i=1

xiw
(1)
ij

�
· w(2)

j1 , (73)

where nvar and nh are the number of neurons in the input layer and in the hidden layer, respectively,
w(1)

ij is the weight between input-layer neuron i and hidden-layer neuron j, and w(2)
j1 is the weight

between the hidden-layer neuron j and the output neuron. A simple sum was used in Eq. (73) for
the synapse function κ.

During the learning process the network is supplied with N training events xa = (x1, . . . , xnvar)a,
a = 1, . . . , N . For each training event a the neural network output yANN,a is computed and compared
to the desired output ŷa ∈ {1, 0} (in classification 1 for signal events and 0 for background events).
An error function E, measuring the agreement of the network response with the desired one, is
defined by

E(x1, . . . ,xN |w) =
N�

a=1

Ea(xa|w) =
N�

a=1

1
2

(yANN,a − ŷa)2 , (74)

where w denotes the ensemble of adjustable weights in the network. The set of weights that
minimises the error function can be found using the method of steepest or gradient descent, provided
that the neuron response function is differentiable with respect to the input weights. Starting from
a random set of weights w(ρ) the weights are updated by moving a small distance in w-space into
the direction −∇wE where E decreases most rapidly

w(ρ+1) = w(ρ) − η∇wE , (75)

where the positive number η is the learning rate.

The weights connected with the output layer are updated by

∆w(2)
j1 = −η

N�

a=1

∂Ea

∂w(2)
j1

= −η
N�

a=1

(yANN,a − ŷa) y(2)
j,a , (76)

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 97

It is likely that the same performance can be achieved with a network of more than one hidden
layer and a potentially much smaller total number of hidden neurons. This would lead to a shorter
training time and a more robust network.

8.10.4 Training of the neural network

Back-propagation (BP)

The most common algorithm for adjusting the weights that optimise the classification performance
of a neural network is the so-called back propagation. It belongs to the family of supervised learning
methods, where the desired output for every input event is known. Back propagation is used by all
neural networks in TMVA. The output of a network (here for simplicity assumed to have a single
hidden layer with a Tanh activation function, and a linear activation function in the output layer)
is given by

yANN =
nh�

j=1

y(2)
j w(2)

j1 =
nh�

j=1

tanh

�
nvar�

i=1

xiw
(1)
ij

�
· w(2)

j1 , (73)

where nvar and nh are the number of neurons in the input layer and in the hidden layer, respectively,
w(1)

ij is the weight between input-layer neuron i and hidden-layer neuron j, and w(2)
j1 is the weight

between the hidden-layer neuron j and the output neuron. A simple sum was used in Eq. (73) for
the synapse function κ.

During the learning process the network is supplied with N training events xa = (x1, . . . , xnvar)a,
a = 1, . . . , N . For each training event a the neural network output yANN,a is computed and compared
to the desired output ŷa ∈ {1, 0} (in classification 1 for signal events and 0 for background events).
An error function E, measuring the agreement of the network response with the desired one, is
defined by

E(x1, . . . ,xN |w) =
N�

a=1

Ea(xa|w) =
N�

a=1

1
2

(yANN,a − ŷa)2 , (74)

where w denotes the ensemble of adjustable weights in the network. The set of weights that
minimises the error function can be found using the method of steepest or gradient descent, provided
that the neuron response function is differentiable with respect to the input weights. Starting from
a random set of weights w(ρ) the weights are updated by moving a small distance in w-space into
the direction −∇wE where E decreases most rapidly

w(ρ+1) = w(ρ) − η∇wE , (75)

where the positive number η is the learning rate.

The weights connected with the output layer are updated by

∆w(2)
j1 = −η

N�

a=1

∂Ea

∂w(2)
j1

= −η
N�

a=1

(yANN,a − ŷa) y(2)
j,a , (76)

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 97

It is likely that the same performance can be achieved with a network of more than one hidden
layer and a potentially much smaller total number of hidden neurons. This would lead to a shorter
training time and a more robust network.

8.10.4 Training of the neural network

Back-propagation (BP)

The most common algorithm for adjusting the weights that optimise the classification performance
of a neural network is the so-called back propagation. It belongs to the family of supervised learning
methods, where the desired output for every input event is known. Back propagation is used by all
neural networks in TMVA. The output of a network (here for simplicity assumed to have a single
hidden layer with a Tanh activation function, and a linear activation function in the output layer)
is given by

yANN =
nh�

j=1

y(2)
j w(2)

j1 =
nh�

j=1

tanh

�
nvar�

i=1

xiw
(1)
ij

�
· w(2)

j1 , (73)

where nvar and nh are the number of neurons in the input layer and in the hidden layer, respectively,
w(1)

ij is the weight between input-layer neuron i and hidden-layer neuron j, and w(2)
j1 is the weight

between the hidden-layer neuron j and the output neuron. A simple sum was used in Eq. (73) for
the synapse function κ.

During the learning process the network is supplied with N training events xa = (x1, . . . , xnvar)a,
a = 1, . . . , N . For each training event a the neural network output yANN,a is computed and compared
to the desired output ŷa ∈ {1, 0} (in classification 1 for signal events and 0 for background events).
An error function E, measuring the agreement of the network response with the desired one, is
defined by

E(x1, . . . ,xN |w) =
N�

a=1

Ea(xa|w) =
N�

a=1

1
2

(yANN,a − ŷa)2 , (74)

where w denotes the ensemble of adjustable weights in the network. The set of weights that
minimises the error function can be found using the method of steepest or gradient descent, provided
that the neuron response function is differentiable with respect to the input weights. Starting from
a random set of weights w(ρ) the weights are updated by moving a small distance in w-space into
the direction −∇wE where E decreases most rapidly

w(ρ+1) = w(ρ) − η∇wE , (75)

where the positive number η is the learning rate.

The weights connected with the output layer are updated by

∆w(2)
j1 = −η

N�

a=1

∂Ea

∂w(2)
j1

= −η
N�

a=1

(yANN,a − ŷa) y(2)
j,a , (76)

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 97

It is likely that the same performance can be achieved with a network of more than one hidden
layer and a potentially much smaller total number of hidden neurons. This would lead to a shorter
training time and a more robust network.

8.10.4 Training of the neural network

Back-propagation (BP)

The most common algorithm for adjusting the weights that optimise the classification performance
of a neural network is the so-called back propagation. It belongs to the family of supervised learning
methods, where the desired output for every input event is known. Back propagation is used by all
neural networks in TMVA. The output of a network (here for simplicity assumed to have a single
hidden layer with a Tanh activation function, and a linear activation function in the output layer)
is given by

yANN =
nh�

j=1

y(2)
j w(2)

j1 =
nh�

j=1

tanh

�
nvar�

i=1

xiw
(1)
ij

�
· w(2)

j1 , (73)

where nvar and nh are the number of neurons in the input layer and in the hidden layer, respectively,
w(1)

ij is the weight between input-layer neuron i and hidden-layer neuron j, and w(2)
j1 is the weight

between the hidden-layer neuron j and the output neuron. A simple sum was used in Eq. (73) for
the synapse function κ.

During the learning process the network is supplied with N training events xa = (x1, . . . , xnvar)a,
a = 1, . . . , N . For each training event a the neural network output yANN,a is computed and compared
to the desired output ŷa ∈ {1, 0} (in classification 1 for signal events and 0 for background events).
An error function E, measuring the agreement of the network response with the desired one, is
defined by

E(x1, . . . ,xN |w) =
N�

a=1

Ea(xa|w) =
N�

a=1

1
2

(yANN,a − ŷa)2 , (74)

where w denotes the ensemble of adjustable weights in the network. The set of weights that
minimises the error function can be found using the method of steepest or gradient descent, provided
that the neuron response function is differentiable with respect to the input weights. Starting from
a random set of weights w(ρ) the weights are updated by moving a small distance in w-space into
the direction −∇wE where E decreases most rapidly

w(ρ+1) = w(ρ) − η∇wE , (75)

where the positive number η is the learning rate.

The weights connected with the output layer are updated by

∆w(2)
j1 = −η

N�

a=1

∂Ea

∂w(2)
j1

= −η
N�

a=1

(yANN,a − ŷa) y(2)
j,a , (76)

98 8 The TMVA Methods

and the weights connected with the hidden layers are updated by

∆w
(1)
ij = −η

N�

a=1

∂Ea

∂w
(1)
ij

= −η
N�

a=1

(yANN,a − ŷa) y
(2)
j,a (1− y

(2)
j,a)w(2)

j1 xi,a , (77)

where we have used tanh� x = tanh x(1 − tanhx). This method of training the network is denoted
bulk learning, since the sum of errors of all training events is used to update the weights. An
alternative choice is the so-called online learning, where the update of the weights occurs at each
event. The weight updates are obtained from Eqs. (76) and (77) by removing the event summations.
In this case it is important to use a well randomised training sample. Online learning is the learning
method implemented in TMVA.

BFGS

The Broyden-Fletcher-Goldfarb-Shannon (BFGS) method [24] differs from back propagation by the
use of second derivatives of the error function to adapt the synapse weight by an algorithm which
is composed of four main steps.

1. Two vectors, D and Y are calculated. The vector of weight changes D represents the evolution
between one iteration of the algorithm (k−1) to the next (k). Each synapse weight corresponds
to one element of the vector. The vector Y is the vector of gradient errors.

D
(k)
i = w

(k)
i − w

(k−1)
i , (78)

Y
(k)
i = g

(k)
i − g

(k−1)
i , (79)

where i is the synapse index, gi is the i-th synapse gradient,28
wi is the weight of the i-th

synapse, and k denotes the iteration counter.

2. Approximate the inverse of the Hessian matrix, H
−1, at iteration k by

H
−1(k) =

D · D
T · (1 + Y

T · H
−1(k−1) · Y)

Y T · D
−D · Y

T · H + H · Y · D
T + H

−1(k−1)
, (80)

where superscripts (k) are implicit for D and Y .

3. Estimate the vector of weight changes by

D
(k) = −H

−1(k) · Y
(k)

. (81)

4. Compute a new vector of weights by applying a line search algorithm. In the line search the
error function is locally approximated by a parabola. The algorithm evaluates the second
derivatives and determines the point where the minimum of the parabola is expected. The
total error is evaluated for this point. The algorithm then evaluates points along the line

28The synapse gradient is estimated in the same way as in the BP method (with initial gradient and weights set to
zero).

Neural network : input

17

Input variables :
- Can be correlated (NN uses correlations)
- To improve the NN performance, should avoid unuseful variables (too much

correlated, too low discrimination power)
- They can be transformed to improve their discrimination power before the

training

Neural network : neurons

18

Neural network : neurons

19

Neural network : output

- The neural network output can be real or integer
- For most of the HEP applications it is more interesting to have a a real-valued

variable
- If the training is successful, background should peak at -1 (or 0) and signal at +1
- Shape depends a lot on the NN parameters (layers, epochs...)
- Discrimination power achieved depend a lot on the problems.

20

Neural network : error

- Training error :

- One can compare, at each iteration (epoch),
what is the NN error for the training and
the test sample.

- Errors decrease with epochs in both training
and test samples.
- Usually it stabilizes
- But with more epochs, it can happen
that the test sample will have an error
which will increase again

21

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 97

It is likely that the same performance can be achieved with a network of more than one hidden
layer and a potentially much smaller total number of hidden neurons. This would lead to a shorter
training time and a more robust network.

8.10.4 Training of the neural network

Back-propagation (BP)

The most common algorithm for adjusting the weights that optimise the classification performance
of a neural network is the so-called back propagation. It belongs to the family of supervised learning
methods, where the desired output for every input event is known. Back propagation is used by all
neural networks in TMVA. The output of a network (here for simplicity assumed to have a single
hidden layer with a Tanh activation function, and a linear activation function in the output layer)
is given by

yANN =
nh�

j=1

y(2)
j w(2)

j1 =
nh�

j=1

tanh

�
nvar�

i=1

xiw
(1)
ij

�
· w(2)

j1 , (73)

where nvar and nh are the number of neurons in the input layer and in the hidden layer, respectively,
w(1)

ij is the weight between input-layer neuron i and hidden-layer neuron j, and w(2)
j1 is the weight

between the hidden-layer neuron j and the output neuron. A simple sum was used in Eq. (73) for
the synapse function κ.

During the learning process the network is supplied with N training events xa = (x1, . . . , xnvar)a,
a = 1, . . . , N . For each training event a the neural network output yANN,a is computed and compared
to the desired output ŷa ∈ {1, 0} (in classification 1 for signal events and 0 for background events).
An error function E, measuring the agreement of the network response with the desired one, is
defined by

E(x1, . . . ,xN |w) =
N�

a=1

Ea(xa|w) =
N�

a=1

1
2

(yANN,a − ŷa)2 , (74)

where w denotes the ensemble of adjustable weights in the network. The set of weights that
minimises the error function can be found using the method of steepest or gradient descent, provided
that the neuron response function is differentiable with respect to the input weights. Starting from
a random set of weights w(ρ) the weights are updated by moving a small distance in w-space into
the direction −∇wE where E decreases most rapidly

w(ρ+1) = w(ρ) − η∇wE , (75)

where the positive number η is the learning rate.

The weights connected with the output layer are updated by

∆w(2)
j1 = −η

N�

a=1

∂Ea

∂w(2)
j1

= −η
N�

a=1

(yANN,a − ŷa) y(2)
j,a , (76)

2.3 Use of an ANN forK0
L
Background Suppression 27

Epochs
50 100 150 200 250 300 350 400 450 500

Es
tim

at
or

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5 Training Sample
Test sample

MLP Convergence Test

Figure 2.9: ANN Training (solid red) and testing (dashed blue) output respect to training
epoch.

NN_AllVars
-1 -0.5 0 0.5 1

No
rm

al
iz

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Signal
Background

NN_AllVars
-1 -0.5 0 0.5 1

No
rm

al
iz

ed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

U/
O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA output for classifier: NN_AllVars

Figure 2.10: ANN output for signal (dashed blue) and background (solid red) events.

=> Overtraining :
- The neural network was trained to recognize even the statistical fluctuations
of the training sample and is therefore not suitable for any test sample

Neural network : overtraining

- Simple check : NN output for the training and test sample.
- Both samples should have the same shape, with the statistical uncertainties

22

Not overtrained Overtrained

BDT response
-0.4 -0.2 0 0.2 0.4

N
or

m
al

iz
ed

0

2

4

6

8

10

12
Signal (test sample)
Background (test sample)

Signal (training sample)
Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0 (0)

BDT response
-0.4 -0.2 0 0.2 0.4

N
or

m
al

iz
ed

0

2

4

6

8

10

12

U
/O

-fl
ow

 (S
,B

):
(0

.0
, 0

.0
)%

 /
(0

.0
, 0

.0
)%

TMVA overtraining check for classifier: BDT

Neural network : performance

Usual figure of merit to check the performance :
- Scan the performance varying the cut on the network output
- Plot the signal efficiency versus background efficiency (or background

rejection). Each cut on the NN output is one point on the figure.
- The NN performs (almost all the time) better than the rectangular cut

23

Example without
correlation

Example with
correlation
(and few statistics)

Neural network : examples in HEP

24

Photon identification at D0 and applications5

dates with transverse momentum pT > 21 (20) GeV for
the highest (next-to-highest) pT photon candidate and
pseudorapidity |η| < 0.9, for which the trigger require-
ments are > 96% efficient. The minimum pT require-
ments for the two photon candidates are chosen to be
different following theoretical discussions [13, 14] and a
previous measurement [10]. The photon pT is computed
with respect to the reconstructed event primary vertex
(PV) with the highest number of associated tracks. The
PV is required to be within 60 cm of the center of the de-
tector along the beam axis. The PV has a reconstruction
efficiency of about 98% and has about 65% probability
of being the correct vertex corresponding to the hard
pp̄ → γγ +X production.
Photon candidates are formed from clusters of

calorimeter cells within a cone of radius R =
√

(∆η)2 + (∆φ)2 = 0.4 around a seed tower [16]. The
final cluster energy is then recalculated from the inner
core with R = 0.2. The photon candidates are selected
by requiring: (i) ≥ 97% of the cluster energy be deposited
in the EM calorimeter layers; (ii) the calorimeter isola-
tion I = [Etot(0.4)−EEM(0.2)]/EEM(0.2) < 0.10, where
Etot(R) [EEM(R)] is the total [EM only] energy in a cone
of radius R; (iii) the pT scalar sum of all tracks origi-
nating from the PV in an annulus of 0.05 < R < 0.4
around the EM cluster be< 1.5 GeV; and (iv) the energy-
weighted EM shower width be consistent with that ex-
pected for an electromagnetic shower. To suppress elec-
trons misidentified as photons, the EM clusters are re-
quired to not be spatially matched to significant tracker
activity, either a reconstructed track or a density of hits
in the SMT and CFT consistent with that of an elec-
tron [19]. In the following, this requirement will be re-
ferred to as the “track-match veto”.
To further suppress jets misidentified as photons, an

artificial neural network (NN) discriminant which ex-
ploits differences in tracker activity and energy deposits
in the calorimeter and in the CPS between photons and
jets is defined [1]. The NN is trained using γ and jet
pythia MC samples. The shapes of the NN output
(ONN), normalized to unit area and obtained after ap-
plying all data selection criteria, are shown in Figure
2, exhibiting a significant discrimination between pho-
tons and jets. Photon candidates satisfy the requirement
ONN > 0.3, which is ≈ 98% efficient for photons and re-
jects ≈ 40% of the jets misidentified as photons. The
ONN shape is validated in data. For photons a data sam-
ple consisting of photons radiated from charged leptons
in Z boson decays (Z → $+$−γ, $ = e, µ) [20] is used.
The MC modeling of the ONN shape for jets is validated
in a sample of photon candidates selected by inverting
the photon isolation (I > 0.07), a requirement that sig-
nificantly enriches the sample in jets. The data and MC
ONN shapes are compared in Figures 2 and 3 and found
to be in good agreement.
Finally, the two photon candidates are required to be

NNO
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 e

ve
nt

s

0.05
0.1

0.15
0.2

0.25
0.3

0.35
-1DØ, 4.2 fb

) dataµ (l = e,!-l+Z->l
 MC!

jet MC

FIG. 2: Comparison of the normalized ONN spectra for pho-
tons from DPPMC and Z → !+!−γ data and for misidentified
jets from dijet MC.

spatially separated from each other by a distance in η−φ
space ∆R > 0.4 and to satisfy Mγγ > pγγT . The lat-
ter requirement is satisfied by the majority (≈ 92%) of
DPP events and, together with the photon isolation re-
quirements, allows significant suppression of the contri-
bution from the fragmentation diagrams, thus restricting
the data-to-theory comparison to the region where the
theoretical calculations should have smaller uncertainties
[13].

After imposing all requirements, 10938 events with
diphoton candidates are selected in data. This sam-
ple includes instrumental background contributions from
γ+jet and dijet production, where a jet is misidentified
as a single photon as a result of fluctuations in the parton
fragmentation into a well-isolated neutral meson (π0 or η)
decaying into a final state with two or more photons. An
additional smaller background contribution results from
Z-boson/Drell-Yan production events Z/γ∗ → e+e−

(ZDY) in which both electrons are misidentified as pho-
tons.

The contribution from ZDY events is estimated us-
ing the MC simulation with pythia, normalized to the
NNLO cross section [21]. The selection efficiencies de-
termined from the MC simulation are corrected to those
measured in the data. On average, each electron has
a 2% probability of satisfying the photon selection cri-
teria, mainly due to the inefficiency of the track-match
veto requirements. The total ZDY contribution is es-
timated to be 161 ± 20 events. Backgrounds due to
γ+jet and dijet events are estimated from data by using
a 4 × 4 matrix background estimation method [1]. Af-
ter applying all of the selection criteria described above,
a tighter ONN requirement (ONN > 0.6) is used to
classify the data events into four categories, depend-
ing on whether both photon candidates, only the high-
est pT one, only the next-to-highest pT one, or nei-
ther of the two photon candidates pass (p) or fail (f)
this requirement. The corresponding number of events

Goal : discriminate photons against neutral mesons in jets
Neural network input variables :
- Shape of the calorimeter energy deposit
- Track variables in an isolation cone around the photon

!"#$#%%&'()*+',-./0123'4'!"5+#6+'*7'89,':;<< =

!"#$%&"'"()

! !"#$%&'
! ()*+*$,-"+),Σ.

/,
*0,+)1,(%2+"3&14,4522*5$6"$#,"+,-"+)"$,%,3*$1,

78√∆ϕ2+∆η2 = 9:;<,4=%&&12,+)%$,>,?1@:
! A%3B#2*5$6

! C%"$&D,(%"24,*0,3*&&"$1%2,()*+*$4,02*=,π0,%$6,η,613%D4<,
213*$4+253+16,%4,%,4"$#&1,()*+*$

! 21E13+"*$,F%416,*$,"4*&%+"*$,%$6,*$,.GHI,4)*-12,
+2%$4J1241,4)%(1:

! 21=$%$+,4+%+"4+"3%&&D,45F4+2%3+16

! C1%4521=1$+,(120*2=16,"$,;,η−F"$4,%$6,K>,.
/
,F"$4:

! G*=F"$14,)*+,'")-+.$
! G*$J124"*$,=1+)*6<,1L(&*"+"$#,3*$J12+16,()*+*$<,3*=(1+"+"J1,%+,&*-,.

/
,2%$#1

! M4*&%+"*$,=1+)*6<,54"$#,%&&,()*+*$4<,3*=(1+"+"J1,%+,)"#)12,.
/
,2%$#1

Isolation

TRK HCALECAL

!

jet

! π0 accompanied by other particles

! Isolation ∆R =
√

∆η2 + ∆φ2

" IsoTRK = ∑ pT in tracker

" IsoECAL= ∑ ET in ECAL

" IsoHCAL= ∑ ET in HCAL

! Low value of H/E identifies photons

! Suited for use an electron control sample

Variable Rout Rin ∆η
IsoTRK 0.4 0.04 0.015
IsoECAL 0.4 3.5 crystals 2.5 crystals
IsoHCAL 0.4 0.15 -

H/E 0.15 - -

"#

#

$

R

Rout

in

S.Ganjour Approval QCD-10-037 12

Decision tree

- A decision tree is a binary tree : a sequence of cuts paving the phase-space of
the input variables

- Repeated yes/no decisions on each variables are taken for an event until a
stop criterion is fulfilled

- Trained to maximize the purity of signal nodes (or the impurity of background
nodes)

25

8.12 Boosted Decision and Regression Trees 105

Figure 18: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using
the discriminating variables xi is applied to the data. Each split uses the variable that at this node gives the
best separation between signal and background when being cut on. The same variable may thus be used at
several nodes, while others might not be used at all. The leaf nodes at the bottom end of the tree are labeled
“S” for signal and “B” for background depending on the majority of events that end up in the respective
nodes. For regression trees, the node splitting is performed on the variable that gives the maximum decrease
in the average squared error when attributing a constant value of the target variable as output of the node,
given by the average of the training events in the corresponding (leaf) node (see Sec. 8.12.3).

factory->BookMethod(Types::kBDT, "BDT", "<options>");

Code Example 46: Booking of the BDT classifier: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string.
Individual options are separated by a ’:’. See Sec. 3.1.5 for more information on the booking.

Several configuration options are available to customize the BDT classifier. They are summarized
in Option Tables 21 and 22 and described in more detail in Sec. 8.12.2.

8.12.2 Description and implementation

Decision trees are well known classifiers that allow a straightforward interpretation as they can be
visualized by a simple two-dimensional tree structure. They are in this respect similar to rectangular
cuts. However, whereas a cut-based analysis is able to select only one hypercube as region of phase

- Decision trees are extremely
sensitive to the training samples,
therefore to overtraining

- To stabilize their performance, one
uses different techniques :

- Boosting
- Bagging
- Random forests

Decision tree : structure

- Similar to rectangular cuts, but each cut depends on the previous one
- Classifies from a set of attributes. Each node splits the data according to one

attribute

26

8.12 Boosted Decision and Regression Trees 105

Figure 18: Schematic view of a decision tree. Starting from the root node, a sequence of binary splits using
the discriminating variables xi is applied to the data. Each split uses the variable that at this node gives the
best separation between signal and background when being cut on. The same variable may thus be used at
several nodes, while others might not be used at all. The leaf nodes at the bottom end of the tree are labeled
“S” for signal and “B” for background depending on the majority of events that end up in the respective
nodes. For regression trees, the node splitting is performed on the variable that gives the maximum decrease
in the average squared error when attributing a constant value of the target variable as output of the node,
given by the average of the training events in the corresponding (leaf) node (see Sec. 8.12.3).

factory->BookMethod(Types::kBDT, "BDT", "<options>");

Code Example 46: Booking of the BDT classifier: the first argument is a predefined enumerator, the second
argument is a user-defined string identifier, and the third argument is the configuration options string.
Individual options are separated by a ’:’. See Sec. 3.1.5 for more information on the booking.

Several configuration options are available to customize the BDT classifier. They are summarized
in Option Tables 21 and 22 and described in more detail in Sec. 8.12.2.

8.12.2 Description and implementation

Decision trees are well known classifiers that allow a straightforward interpretation as they can be
visualized by a simple two-dimensional tree structure. They are in this respect similar to rectangular
cuts. However, whereas a cut-based analysis is able to select only one hypercube as region of phase

Internal node

Terminal nodeAssigned class
(here, signal/background)

Root node

Decision

Decision tree : training

- Training a decision tree : process that defines the splitting criteria for each node.
- Start with the root node, the split in two subsets of training events. Go through the

same algorithm for the next splitting operation
- Repeat until the whole tree is built

- Splitting criterion found maximizing the signal/background separation.
- Different criteria available. Usually one uses the
! ! ! Gini Index : p.(1-p) where p is the signal purity
- Note that it is symmetric between signal and background
- Selects the variable and cut value that optimises the increase in the separation

index between the parent node and the sum of the indices of the two daughter
nodes, weighted by their relative fraction of events.

27

10 Multivariate Data Analysis Techniques

The node splitting is stopped once it has reached the minimum number of events. The end
(leaf) nodes are classified as signal or background according to the class the majority of
events belongs to.

A variety of separation criteria can be configured to assess the performance of a vari-
able and a specific cut requirement. Because a cut that selects predominantly background
is as valuable as one that selects signal, the criteria are symmetric with respect to the event
classes. All separation criteria have a maximum where the samples are fully mixed, i.e.,
at purity p = 0.5, and fall off to zero when the sample consists of one event class only.
Tests have revealed no significant performance disparity between the following separation
criteria:

• Gini Index, defined by p · (1 − p).

• Cross entropy, defined by −p · ln(p) − (1 − p) · ln(1 − p).

• Misclassification error, defined by 1 − max(p, 1 − p).

The splitting criterion being always a cut on a single variable, the training procedure se-
lects the variable and cut value that optimizes the increase in the separation index between
the parent node and the sum of the indexes of the two daughter nodes, weighted by their
relative fraction of events. The cut values are optimized numerically, in figure 1.3 we
show the shape of the above mentioned measures for a two class problem; the fact that
Gini Index and Cross entropy are smooth functions of p, let them to be more amenable for
numerical minimization.

Figure 1.3: Node impurity measures, as function of purity of background events: misclas-
sification error (blue), Gini index (green), entropy (red). Entropy has been scaled in order
to pass through (0.5, 0.5).

2

til a given number of final branches, called leaves, are
obtained, or until each leaf is pure signal or pure back-
ground, or has too few events to continue. This descrip-
tion is a little oversimplified. In fact at each stage one
picks as the next branch to split, the branch which will
give the best increase in the quality of the separation. A
schematic of a decision tree is shown in Fig.1, in which
3 variables are used for signal/background separation:
event hit multiplicity, energy, and reconstructed radial
position.

What criterion is used to define the quality of separa-
tion between signal and background in the split? Imagine
the events are weighted with each event having weight
Wi. Define the purity of the sample in a branch by

P =

∑

s Ws
∑

s Ws +
∑

b Wb
,

where
∑

s is the sum over signal events and
∑

b is the
sum over background events. Note that P (1 − P) is 0
if the sample is pure signal or pure background. For a
given branch let

Gini = (
n

∑

i=1

Wi)P (1 − P),

where n is the number of events on that branch. The
criterion chosen is to minimize

Ginileft son + Giniright son.

To determine the increase in quality when a node is
split into two branches, one maximizes

Criterion = Ginifather − Ginileft son − Giniright son.

At the end, if a leaf has purity greater than 1/2 (or
whatever is set), then it is called a signal leaf and if the
purity is less than 1/2, it is a background leaf. Events
are classified signal if they land on a signal leaf and back-
ground if they land on a background leaf. The resulting
tree is a decision tree.

Decision trees have been available for some time[5].
They are known to be powerful but unstable, i.e., a small
change in the training sample can give a large change in
the tree and the results.

There are three major measures of node impurity used
in practice: misclassification error, the gini index and
the cross-entropy. If we define p as the proportion of
the signal in a node, then the three measures are: 1 -
max(p, 1-p) for the misclassification error, 2p(1-p) for
the gini index and -plog(p) - (1-p)log(1-p) for the cross-
entropy. The three measures are similar, but the gini
index and the cross-entropy are differentiable, and hence
more amenable to numerical optimization. In addition,
the gini index and the cross-entropy are more sensitive
to change in the node probabilities than the misclassifi-
cation error. The gini index and the cross-entropy are
similar.

S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ! 100

Energy?
< 0.2 GeV ! 0.2 GeV

Radius?
< 500 cm ! 500 cm

FIG. 1: Schematic of a decision tree. S for signal, B for back-
ground. Terminal nodes(called leaves) are shown in boxes.
If signal events are dominant in one leave, then this leave is
signal leave; otherwise, background leave.

B. Boosting

Within the last few years a great improvement has
been made[6, 7, 8]. Start with unweighted events and
build a tree as above. If a training event is misclassified,
i.e, a signal event lands on a background leaf or a back-
ground event lands on a signal leaf, then the weight of
that event is increased (boosted).

A second tree is built using the new weights, no longer
equal. Again misclassified events have their weights
boosted and the procedure is repeated. Typically, one
may build 1000 or 2000 trees this way.

A score is now assigned to an event as follows. The
event is followed through each tree in turn. If it lands
on a signal leaf it is given a score of 1 and if it lands on
a background leaf it is given a score of -1. The renor-
malized sum of all the scores, possibly weighted, is the
final score of the event. High scores mean the event is
most likely signal and low scores that it is most likely
background. By choosing a particular value of the score
on which to cut, one can select a desired fraction of the
signal or a desired ratio of signal to background. For
those familiar with ANNs, the use of this score is the
same as the use of the ANN value for a given event. For
the MiniBooNE experiment, boosting has been found to
be superior to ANNs. Statisticians and computer scien-
tists have found that this method of classification is very
efficient and robust. Furthermore, the amount of tuning
needed is rather modest compared with ANNs. It works
well with many PID variables. If one makes a monotonic
transformation of a variable, so that if x1 > x2 then
f(x1) > f(x2), the boosting method gives exactly the
same results. It depends only on the ordering according
to the variable, not on the value of the variable.

In articles on boosting within the statistics and com-

Decision tree : overtraining

Advantages :
- Decision trees are independent of monotonous variable transformations
- Weak variables are ignored and do not deteriorate performance

- But Decision trees are extremely sensitive to the training samples,
therefore to overtraining
- Slightly different training samples can lead to radically different DT

- To stabilize Decision Tree performance, one can use different techniques.
- Boosting
- Bagging
- Random forests
- Pruning

28

Decision tree : boosting

Boosting :
- Sequentially apply the DT algorithm to reweighted

(boosted) versions of the training data
- Take a weighted majority vote of the sequence of DT

algorithms produced.
- Boosting allows also to increase the performance.
- Works very well on non-optimal decision tree (small

number of nodes...)

Most famous implementation in AdaBoost (adaptive
boost) :
- Events misclassified during the training of a decision

tree are given a higher event weight
- Events are reweighted depending on the error of the

previous tree

- The output of the BDT is :
! where hi=+1 or -1. 29

7.1 Adaptive Boost (AdaBoost) 53

The boost weight is derived from the misclassification rate, err, of the previous tree16,

α =
1 − err

err
. (23)

The weights of the entire event sample are then renormalised such that the sum of weights remains

constant.

We define the result of an individual classifier as h(x), with (x being the tuple of input variables)

encoded for signal and background as h(x) = +1 and − 1, respectively. The boosted event classifi-

cation yBoost(x) is then given by

yBoost(x) =
1

Ncollection
·

Ncollection�

i

ln(αi) · hi(x) , (24)

where the sum is over all classifiers in the collection. Small (large) values for yBoost(x) indicate

a background-like (signal-like) event. Equation (24) represents the default boosting algorithm. It

can be modified via the configuration option string of the MVA method to be boosted (see Option

Tables 21 and 22 on pages 106 and 106 for boosted decision trees, and Option Table 24 for general

classifier boosting 9.1) if one wants to use an unweighted average of the boosted decision trees or

classifiers instead of the weighted one.

For regression trees, the AdaBoost algorithm needs to be modified. TMVA uses here the so-called

AdaBoost.R2 algorithm [27]. The idea is similar to AdaBoost albeit with a redefined loss per event

to account for the the deviation of the estimated target value from the true one. Moreover, as there

are no longer correctly and wrongly classified events, all events need to be reweighted depending on

their individual loss, which – for event k – is given by

Linear : L(k) =
|y(k)−ŷ(k)|

max
events k�

(|y(k�)−ŷ(k�|) , (25)

Square : L(k) =

�
|y(k)−ŷ(k)|

max
events k�

(|y(k�)−ŷ(k�|)

�2

, (26)

Exponential : L(k) = 1 − exp

�
− |y(k)−ŷ(k)|

max
events k�

(|y(k�)−ŷ(k�|)

�
. (27)

The average loss of the classifier y(i) over the whole training sample, �L�(i) =
�

events k� w(k�)L(i)(k�),
can be considered to be the analogon to the error fraction in classification. Given �L�, one computes

the quantity β(i) = �L�(i)/(1 − �L�(i)), which is used in the boosting of the events, and for the

combination of the regression methods belonging to the boosted collection. The boosting weight,

w(i+1)(k), for event k and boost step i + 1 thus reads

w(i+1)
(k) = w(i)

(k) · β1−L(i)(k)
(i) . (28)

16By construction, the error rate is err ≤ 0.5 as the same training events used to classify the output nodes of the
previous tree are used for the calculation of the error rate.

7.1 Adaptive Boost (AdaBoost) 53

The boost weight is derived from the misclassification rate, err, of the previous tree16,

α =
1 − err

err
. (23)

The weights of the entire event sample are then renormalised such that the sum of weights remains

constant.

We define the result of an individual classifier as h(x), with (x being the tuple of input variables)

encoded for signal and background as h(x) = +1 and − 1, respectively. The boosted event classifi-

cation yBoost(x) is then given by

yBoost(x) =
1

Ncollection
·

Ncollection�

i

ln(αi) · hi(x) , (24)

where the sum is over all classifiers in the collection. Small (large) values for yBoost(x) indicate

a background-like (signal-like) event. Equation (24) represents the default boosting algorithm. It

can be modified via the configuration option string of the MVA method to be boosted (see Option

Tables 21 and 22 on pages 106 and 106 for boosted decision trees, and Option Table 24 for general

classifier boosting 9.1) if one wants to use an unweighted average of the boosted decision trees or

classifiers instead of the weighted one.

For regression trees, the AdaBoost algorithm needs to be modified. TMVA uses here the so-called

AdaBoost.R2 algorithm [27]. The idea is similar to AdaBoost albeit with a redefined loss per event

to account for the the deviation of the estimated target value from the true one. Moreover, as there

are no longer correctly and wrongly classified events, all events need to be reweighted depending on

their individual loss, which – for event k – is given by

Linear : L(k) =
|y(k)−ŷ(k)|

max
events k�

(|y(k�)−ŷ(k�|) , (25)

Square : L(k) =

�
|y(k)−ŷ(k)|

max
events k�

(|y(k�)−ŷ(k�|)

�2

, (26)

Exponential : L(k) = 1 − exp

�
− |y(k)−ŷ(k)|

max
events k�

(|y(k�)−ŷ(k�|)

�
. (27)

The average loss of the classifier y(i) over the whole training sample, �L�(i) =
�

events k� w(k�)L(i)(k�),
can be considered to be the analogon to the error fraction in classification. Given �L�, one computes

the quantity β(i) = �L�(i)/(1 − �L�(i)), which is used in the boosting of the events, and for the

combination of the regression methods belonging to the boosted collection. The boosting weight,

w(i+1)(k), for event k and boost step i + 1 thus reads

w(i+1)
(k) = w(i)

(k) · β1−L(i)(k)
(i) . (28)

16By construction, the error rate is err ≤ 0.5 as the same training events used to classify the output nodes of the
previous tree are used for the calculation of the error rate.

3

puter science communities, it is often recommended that
short trees with eight leaves or so be used. For the Mini-
BooNE Monte Carlo samples it was found that large trees
with 45 leaves worked significantly better.

C. Some Boosting Algorithms

If there are N total events in the sample, the weight of
each event is initially taken as 1/N . Suppose that there
are Ntree trees and m is the index of an individual tree.
Let

• xi = the set of PID variables for the ith event.

• yi = 1 if the ith event is a signal event and yi = −1
if the event is a background event.

• wi = the weight of the ith event.

• Tm(xi) = 1 if the set of variables for the ith event
lands that event on a signal leaf and Tm(xi) = −1
if the set of variables for that event lands it on a
background leaf.

• I(yi "= Tm(xi)) = 1 if yi "= Tm(xi) and 0 if yi =
Tm(xi).

There are at least two commonly used methods for boost-
ing the weights of the misclassified events in the training
sample.

The first boosting method is called AdaBoost[3]. De-
fine for the mth tree:

errm =

∑N
i=1 wiI(yi "= Tm(xi))

∑N
i=1 wi

.

αm = β × ln((1 − errm)/errm).

β = 1 is the value used in the standard AdaBoost
method. For the MiniBooNE Monte Carlo samples,
β = 0.5 has been found to give better results. Change
the weight of each event i, i = 1, ..., N :

wi → wi × eαmI(yi !=Tm(xi)).

Each classifier Tm is required to be better than random
guessing with respect to the weighted distribution upon
which the classifier is trained. Thus, errm is required to
be less than 0.5, since, otherwise, the weights would be
updated in the wrong direction. Next, renormalize the
weights, wi → wi/

∑N
i=1 wi. The score for a given event

is

T (x) =
Ntree
∑

m=1

αmTm(x),

which is just the weighted sum of the scores over the
individual trees, see Fig.2.

Training Sample

Weighted Sample

Weighted Sample

Weighted Sample

T1(x)

T2(x)

T3(x)

TM(x)

! "mTm(x)

FIG. 2: Schematic of a boosting procedure.

The second boosting method is called ε-Boost[4], or
sometimes “shrinkage”. After the mth tree, change the
weight of each event i, i = 1, ..., N :

wi → wie
2εI(yi !=Tm(xi)),

where ε is a constant of the order of 0.01. Renormalize
the weights, wi → wi/

∑N
i=1 wi. The score for a given

event is

T (x) =
Ntree
∑

m=1

εTm(x),

which is the renormalized, but unweighted, sum of the
scores over individual trees.

The AdaBoost and ε−Boost algorithms used in this
paper try to minimize the expectation value: E(e−yF (x)),
where y = 1 for signal, y = -1 for background, F (x) =
∑Ntrees

i=1 fi(x), where the classifier fi(x) = 1 if an event
lands on signal leaf, and fi(x) = −1 if an event lands
on background leaf. This minimization is closely related
to minimizing the binomial log-likelihood[4]. It can be
shown that E(e−yF (x)) is minimized at

F (x) =
1

2
ln

P (y = 1|x)

P (y = −1|x)
=

1

2
ln

p(x)

1 − p(x)

Let y∗ = (y + 1)/2. It is then easy to show that

e−yF (x) =
|y∗ − p(x)|

√

p(x)(1 − p(x))

The right-hand side is known as the χ statistic. χ2 is
a quadrative approximation to the log-likelihood, so χ
can be considered a gentler alternative. It turns out
that fitting using χ is monotone and smooth; the cri-
teria will continually drive the estimates towards purer
solutions. An ANN tries to minimize the squared-error
E(y − F (x))2, where y = 1 for signal events, y = 0 for
background events, and F (x) is the network prediction
for training events.

!"!"#$"%&'((%)*&+,

#$%&'()*+,--.'(/0+1#$%,--.'2

)-./0/0$%1.23#"
4#.((/5/"-%
6789739

:"/$;<"=%
1.23#"

-",>"/$;<
4#.((/5/"-%
67?9739

:"/$;<"=%
1.23#"

-",>"/$;<
4#.((/5/"-%
67@9739

:"/$;<"=%
1.23#"

-",>"/$;<

:"/$;<"=%
1.23#"

-",>"/$;<

4#.((/5/"-%
67A9739

4#.((/5/"-%
6729739

"--

"--

"--

? 5 >/<; B
5
2/(4#.((/5/"= "C"0<(5

.## "C"0<(

6#.((/5/"-D 7/9
7/9"--

7/9
/ "--

? 5E7F9 #'$ 6 7F9
5

+=.G''(<%-",>"/$;<(%"C"0<(%
2/(4#.((/5/"=%HE%3-"C/'I(%4#.((/5/"-%HEB

+=.G''(<%>"/$;<(%<;"%4#.((/5/"-(%.#('%
I(/0$%<;"%"--'-%-.<"%'5%<;"%/0=/C/=I.#%
4#.((/5/"-%.44'-=/0$%<'B%

AdaBoost : event weight

30

!"!"#$"%&'((%)*&+,

#$%&''()*+,*-+.)/01(

-./0.%1"0"2
"34/#%"5"6.%7"8$1.(

98(:#/((8;8"<%"5"6.(%$".
#/0$"0%7"8$1.(

3

puter science communities, it is often recommended that
short trees with eight leaves or so be used. For the Mini-
BooNE Monte Carlo samples it was found that large trees
with 45 leaves worked significantly better.

C. Some Boosting Algorithms

If there are N total events in the sample, the weight of
each event is initially taken as 1/N . Suppose that there
are Ntree trees and m is the index of an individual tree.
Let

• xi = the set of PID variables for the ith event.

• yi = 1 if the ith event is a signal event and yi = −1
if the event is a background event.

• wi = the weight of the ith event.

• Tm(xi) = 1 if the set of variables for the ith event
lands that event on a signal leaf and Tm(xi) = −1
if the set of variables for that event lands it on a
background leaf.

• I(yi "= Tm(xi)) = 1 if yi "= Tm(xi) and 0 if yi =
Tm(xi).

There are at least two commonly used methods for boost-
ing the weights of the misclassified events in the training
sample.

The first boosting method is called AdaBoost[3]. De-
fine for the mth tree:

errm =

∑N
i=1 wiI(yi "= Tm(xi))

∑N
i=1 wi

.

αm = β × ln((1 − errm)/errm).

β = 1 is the value used in the standard AdaBoost
method. For the MiniBooNE Monte Carlo samples,
β = 0.5 has been found to give better results. Change
the weight of each event i, i = 1, ..., N :

wi → wi × eαmI(yi !=Tm(xi)).

Each classifier Tm is required to be better than random
guessing with respect to the weighted distribution upon
which the classifier is trained. Thus, errm is required to
be less than 0.5, since, otherwise, the weights would be
updated in the wrong direction. Next, renormalize the
weights, wi → wi/

∑N
i=1 wi. The score for a given event

is

T (x) =
Ntree
∑

m=1

αmTm(x),

which is just the weighted sum of the scores over the
individual trees, see Fig.2.

Training Sample

Weighted Sample

Weighted Sample

Weighted Sample

T1(x)

T2(x)

T3(x)

TM(x)

! "mTm(x)

FIG. 2: Schematic of a boosting procedure.

The second boosting method is called ε-Boost[4], or
sometimes “shrinkage”. After the mth tree, change the
weight of each event i, i = 1, ..., N :

wi → wie
2εI(yi !=Tm(xi)),

where ε is a constant of the order of 0.01. Renormalize
the weights, wi → wi/

∑N
i=1 wi. The score for a given

event is

T (x) =
Ntree
∑

m=1

εTm(x),

which is the renormalized, but unweighted, sum of the
scores over individual trees.

The AdaBoost and ε−Boost algorithms used in this
paper try to minimize the expectation value: E(e−yF (x)),
where y = 1 for signal, y = -1 for background, F (x) =
∑Ntrees

i=1 fi(x), where the classifier fi(x) = 1 if an event
lands on signal leaf, and fi(x) = −1 if an event lands
on background leaf. This minimization is closely related
to minimizing the binomial log-likelihood[4]. It can be
shown that E(e−yF (x)) is minimized at

F (x) =
1

2
ln

P (y = 1|x)

P (y = −1|x)
=

1

2
ln

p(x)

1 − p(x)

Let y∗ = (y + 1)/2. It is then easy to show that

e−yF (x) =
|y∗ − p(x)|

√

p(x)(1 − p(x))

The right-hand side is known as the χ statistic. χ2 is
a quadrative approximation to the log-likelihood, so χ
can be considered a gentler alternative. It turns out
that fitting using χ is monotone and smooth; the cri-
teria will continually drive the estimates towards purer
solutions. An ANN tries to minimize the squared-error
E(y − F (x))2, where y = 1 for signal events, y = 0 for
background events, and F (x) is the network prediction
for training events.

3

puter science communities, it is often recommended that
short trees with eight leaves or so be used. For the Mini-
BooNE Monte Carlo samples it was found that large trees
with 45 leaves worked significantly better.

C. Some Boosting Algorithms

If there are N total events in the sample, the weight of
each event is initially taken as 1/N . Suppose that there
are Ntree trees and m is the index of an individual tree.
Let

• xi = the set of PID variables for the ith event.

• yi = 1 if the ith event is a signal event and yi = −1
if the event is a background event.

• wi = the weight of the ith event.

• Tm(xi) = 1 if the set of variables for the ith event
lands that event on a signal leaf and Tm(xi) = −1
if the set of variables for that event lands it on a
background leaf.

• I(yi "= Tm(xi)) = 1 if yi "= Tm(xi) and 0 if yi =
Tm(xi).

There are at least two commonly used methods for boost-
ing the weights of the misclassified events in the training
sample.

The first boosting method is called AdaBoost[3]. De-
fine for the mth tree:

errm =

∑N
i=1 wiI(yi "= Tm(xi))

∑N
i=1 wi

.

αm = β × ln((1 − errm)/errm).

β = 1 is the value used in the standard AdaBoost
method. For the MiniBooNE Monte Carlo samples,
β = 0.5 has been found to give better results. Change
the weight of each event i, i = 1, ..., N :

wi → wi × eαmI(yi !=Tm(xi)).

Each classifier Tm is required to be better than random
guessing with respect to the weighted distribution upon
which the classifier is trained. Thus, errm is required to
be less than 0.5, since, otherwise, the weights would be
updated in the wrong direction. Next, renormalize the
weights, wi → wi/

∑N
i=1 wi. The score for a given event

is

T (x) =
Ntree
∑

m=1

αmTm(x),

which is just the weighted sum of the scores over the
individual trees, see Fig.2.

Training Sample

Weighted Sample

Weighted Sample

Weighted Sample

T1(x)

T2(x)

T3(x)

TM(x)

! "mTm(x)

FIG. 2: Schematic of a boosting procedure.

The second boosting method is called ε-Boost[4], or
sometimes “shrinkage”. After the mth tree, change the
weight of each event i, i = 1, ..., N :

wi → wie
2εI(yi !=Tm(xi)),

where ε is a constant of the order of 0.01. Renormalize
the weights, wi → wi/

∑N
i=1 wi. The score for a given

event is

T (x) =
Ntree
∑

m=1

εTm(x),

which is the renormalized, but unweighted, sum of the
scores over individual trees.

The AdaBoost and ε−Boost algorithms used in this
paper try to minimize the expectation value: E(e−yF (x)),
where y = 1 for signal, y = -1 for background, F (x) =
∑Ntrees

i=1 fi(x), where the classifier fi(x) = 1 if an event
lands on signal leaf, and fi(x) = −1 if an event lands
on background leaf. This minimization is closely related
to minimizing the binomial log-likelihood[4]. It can be
shown that E(e−yF (x)) is minimized at

F (x) =
1

2
ln

P (y = 1|x)

P (y = −1|x)
=

1

2
ln

p(x)

1 − p(x)

Let y∗ = (y + 1)/2. It is then easy to show that

e−yF (x) =
|y∗ − p(x)|

√

p(x)(1 − p(x))

The right-hand side is known as the χ statistic. χ2 is
a quadrative approximation to the log-likelihood, so χ
can be considered a gentler alternative. It turns out
that fitting using χ is monotone and smooth; the cri-
teria will continually drive the estimates towards purer
solutions. An ANN tries to minimize the squared-error
E(y − F (x))2, where y = 1 for signal events, y = 0 for
background events, and F (x) is the network prediction
for training events.

3

puter science communities, it is often recommended that
short trees with eight leaves or so be used. For the Mini-
BooNE Monte Carlo samples it was found that large trees
with 45 leaves worked significantly better.

C. Some Boosting Algorithms

If there are N total events in the sample, the weight of
each event is initially taken as 1/N . Suppose that there
are Ntree trees and m is the index of an individual tree.
Let

• xi = the set of PID variables for the ith event.

• yi = 1 if the ith event is a signal event and yi = −1
if the event is a background event.

• wi = the weight of the ith event.

• Tm(xi) = 1 if the set of variables for the ith event
lands that event on a signal leaf and Tm(xi) = −1
if the set of variables for that event lands it on a
background leaf.

• I(yi "= Tm(xi)) = 1 if yi "= Tm(xi) and 0 if yi =
Tm(xi).

There are at least two commonly used methods for boost-
ing the weights of the misclassified events in the training
sample.

The first boosting method is called AdaBoost[3]. De-
fine for the mth tree:

errm =

∑N
i=1 wiI(yi "= Tm(xi))

∑N
i=1 wi

.

αm = β × ln((1 − errm)/errm).

β = 1 is the value used in the standard AdaBoost
method. For the MiniBooNE Monte Carlo samples,
β = 0.5 has been found to give better results. Change
the weight of each event i, i = 1, ..., N :

wi → wi × eαmI(yi !=Tm(xi)).

Each classifier Tm is required to be better than random
guessing with respect to the weighted distribution upon
which the classifier is trained. Thus, errm is required to
be less than 0.5, since, otherwise, the weights would be
updated in the wrong direction. Next, renormalize the
weights, wi → wi/

∑N
i=1 wi. The score for a given event

is

T (x) =
Ntree
∑

m=1

αmTm(x),

which is just the weighted sum of the scores over the
individual trees, see Fig.2.

Training Sample

Weighted Sample

Weighted Sample

Weighted Sample

T1(x)

T2(x)

T3(x)

TM(x)

! "mTm(x)

FIG. 2: Schematic of a boosting procedure.

The second boosting method is called ε-Boost[4], or
sometimes “shrinkage”. After the mth tree, change the
weight of each event i, i = 1, ..., N :

wi → wie
2εI(yi !=Tm(xi)),

where ε is a constant of the order of 0.01. Renormalize
the weights, wi → wi/

∑N
i=1 wi. The score for a given

event is

T (x) =
Ntree
∑

m=1

εTm(x),

which is the renormalized, but unweighted, sum of the
scores over individual trees.

The AdaBoost and ε−Boost algorithms used in this
paper try to minimize the expectation value: E(e−yF (x)),
where y = 1 for signal, y = -1 for background, F (x) =
∑Ntrees

i=1 fi(x), where the classifier fi(x) = 1 if an event
lands on signal leaf, and fi(x) = −1 if an event lands
on background leaf. This minimization is closely related
to minimizing the binomial log-likelihood[4]. It can be
shown that E(e−yF (x)) is minimized at

F (x) =
1

2
ln

P (y = 1|x)

P (y = −1|x)
=

1

2
ln

p(x)

1 − p(x)

Let y∗ = (y + 1)/2. It is then easy to show that

e−yF (x) =
|y∗ − p(x)|

√

p(x)(1 − p(x))

The right-hand side is known as the χ statistic. χ2 is
a quadrative approximation to the log-likelihood, so χ
can be considered a gentler alternative. It turns out
that fitting using χ is monotone and smooth; the cri-
teria will continually drive the estimates towards purer
solutions. An ANN tries to minimize the squared-error
E(y − F (x))2, where y = 1 for signal events, y = 0 for
background events, and F (x) is the network prediction
for training events.

weight of the ith event :

I=1 if the event is
misclassified (0 otherwise)

error on the
mth tree

BDT : example

31
!"!"#$"%&'((%)*&+,

#$%&''()*+#+(,-./0+$0-'1()2%),'1

- .

/01234%5%6 /01234%78%6

)9'%1"0(':0;#"%<=>(? 04%&01@%5%@AB% (3$:0#8CCD% ;E$
'1%
;4%&01@%7%,@AB% (3$:0#8FFD% ;E$

04;4

BDT : example

32
!"!"#$"%&'((%)*&+,

#$%&''()*+#+(,-./0+$0-'1()2%),'1

--%./0%1"/2"%34##%

&.56%7%,6-89:

)1"%2';94/"0%2#.((4<4"5=%%)5"">%?%)5""@
A1"%B3"4$1A"0:%.C"5.$"%'<%A1"%5"(D'/("%A'%
.%A"(A%"C"/A%<5';%9'A1%A5""(%4(%.9#"%A'%
("D.5.A"%(4$/.#%<5';%9.2E$5'F/0%.(%
$''0%.(%'/"%3'F#0%"GD"2A%<5';%A1"%;'(A%
D'3"5<F#%2#.((4<4"5

,"55H"55:%:% 8%

5",3"4$1A

Decision tree : output

- A single decision tree can be trained to gives always
an integer response, : signal (+1) / background (-1)

Boosted decision trees give a Real-valued output :
- The output is a linear combination of +1 and -1, because of the weights over

the different training decision trees during boosting
- Output is quasi-continuous. The number of classes depends on the number of

trees used in the boosting process

33

− −
−

−
−

−

+
+

+
+

+

Examples of classifiers
Linear Quadratic Decision tree

+− +−

−

−

−

+

+

+

f(x) = sign (ax + b) f(x) = sign (ax2 + bx + c)

− −
−

−
−

−

+
+

+
+

+

− −
−

−
−

−

+
+

+
+

+

− −
−

−
−

−

+
+

+
+

+

Cost functions for classification The objective of classification is to min-
imize the probability of making an error on future data, also called the
expected error, and denoted by R.

R(f) = P [Y f(X) < 0] = EPXY
[1[Y f(X)<0]] (1)

This cost cannot be optimized directly, because we don’t know the data
distribution PXY . Therefore, in training classifiers, one uses the empirical

1 tree 850 trees

Decision tree : bagging, random
forests, pruning

- One can also use different techniques such as bagging and random forest
- Improves the stability against fluctuations, not much the performance
- Both of them makes use of the idea of randomizing trees.

Bagging :
- Resampling technique. Training is repeated on “bootstrap” samples (i.e re-

sample training data with replacement), then combined

Random forests :
- Training repeated on random bootstrap (or subsets) of the training data only
- Consider at each node only a random subsets of variables for the split

Pruning :
- Grow tree to the end and “cut back”, nodes that seem statistically dominated

34

Decision tree : example in HEP

Examples in CMS : H→WW, H→bb analyses

35

6 4 H → W
+

W
− Event Selection

BDT Output
-1 -0.5 0 0.5 1

en
tri

es

0

20

40

 data
=130H m

 WW

 Z+jets
 top
 WZ/ZZ

 W+jets

-1L = 4.6 fb
CMS preliminary

(a)

BDT Output
-1 -0.5 0 0.5 1

en
tri

es

0

20

40

 data
=130H m

 WW

 Z+jets
 top
 WZ/ZZ

 W+jets

-1L = 4.6 fb
CMS preliminary

(b)

BDT Output
-1 -0.5 0 0.5 1

en
tri

es

0

20

40

 data
=130H m

 WW

 Z+jets
 top
 WZ/ZZ

 W+jets

-1L = 4.6 fb
CMS preliminary

(c)

BDT Output
-1 -0.5 0 0.5 1

en
tri

es

0

20

40

 data
=130H m

 WW

 Z+jets
 top
 WZ/ZZ

 W+jets

-1L = 4.6 fb
CMS preliminary

(d)

Figure 3: BDT classifier outputs for Higgs signal and background events for mH=130 GeV/c2

in the 0-jet bin same flavor final state (a), 1-jet bin same flavor final state (b), 0-jet bin opposite

flavor final state (c), and 1-jet bin opposite flavor final state (d), after the W
+

W
−

selection. The

area marked as WW corresponds to non-resonant W
+

W
−

production.

14 7 Results

BDT output
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Ev
en

ts

-110

1

10

210

310

410
Data
WH
VV
W + bb
W + udscg
Z + bb
Z + udscg
Single Top
tt

QCD
MC uncertainty

CMS Preliminary
-1 = 7 TeV, L = 4.7 fbs

)b)H(b!µW(

BDT output
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
at

a/
M

C

0.5

1

1.5 Kolmogorov Test: 0.996885
chi2/ndf: 0.54051, p-value: 0.966576

BDT output
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Ev
en

ts

-110

1

10

210

310

410 Data
VV
W + bb
W + udscg
Z + bb
Z + udscg
Single Top
tt

QCD
MC uncertainty

CMS Preliminary
-1 = 7 TeV, L = 4.7 fbs

)b)H(b!W(e

BDT output
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
at

a/
M

C

0.5

1

1.5 Kolmogorov Test: 0.97523
chi2/ndf: 0.721828, p-value: 0.791994

BDT Output
-1 -0.8 -0.6 -0.4 -0.2 0 0.2

Ev
en

ts
 /

0.
10

-310

-210

-110

1

10

210

310

410 CMS Preliminary
-1 = 7 TeV, L = 4.7 fbs

)b)H(b+µ-µZ(

Data
ZH(115 GeV)
ZZ+WZ+WW
Z + udscg
Z + bb

 + S.T.tt

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

da
ta

/m
c

0

0.5

1

1.5

2
Kolmorov Test: 0.656

chi2/ndf: 1.187

BDT output
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Ev
en

ts
 /

0.
1

-210

-110

1

10

210

310

410 Data
bZ + b

Z + udscg
+jetstt

Single top
WW, WZ, ZZ
ZH(115 GeV)

CMS preliminary
-1 = 7 TeV, L = 4.7 fbs

)b)H(b+e-Z(e

D
at

a/
M

C

0
0.5

1
1.5

2 = 0.6702! = 0.987sK

BDT
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Ev
en

ts

-310

-210

-110

1

10

210

310

410 Data

VH(115)

VV

tt
st

QCD

Z+udscg

Z+bb

W+udscg

W+bb

CMS Preliminary
-1 = 7 TeV, L = 4.7 fbs

)b)H(b!!Z(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

da
ta

 /
 m

c

0

0.5

1

1.5

2

Kolmorov Test: 0.420
chi2/ndf: 0.943

Figure 3: Distributions of BDT output for W(µν)H(top left) and W(eν)H(top right), Z(µµ)H
(middle left) and Z(ee)H (middle right), and Z(νν)H (bottom) for data (points with errors), all

backgrounds, and signal after all selection criteria have been applied.

The package TMVA

- Package widely used in HEP
- Root-based implementation (included in every recent ROOT release)

TMVA functionalities :
- Allows to check input variables, correlations, overtraining, performance
- Many multivariate methods available : rectangular cuts, likelihood,

various decision trees, SVM...
- Classification and regression
- Tuning of parameters relatively easy
- Training is user-friendly and fast enough to be manageable on a laptop
- Application is less user friendly : basically have to do it by hand in ROOT

36

Available classifiers
 // --- Cut optimisation
 Use["Cuts"] = 1;
 Use["CutsD"] = 0;
 Use["CutsPCA"] = 0;
 Use["CutsGA"] = 0;
 Use["CutsSA"] = 0;
 //
 // --- 1-dimensional likelihood ("naive Bayes estimator")
 Use["Likelihood"] = 0;
 Use["LikelihoodD"] = 0; // the "D" extension indicates decorrelated input variables (see option strings)
 Use["LikelihoodPCA"] = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings)
 Use["LikelihoodKDE"] = 0;
 Use["LikelihoodMIX"] = 0;
 //
 // --- Mutidimensional likelihood and Nearest-Neighbour methods
 Use["PDERS"] = 0;
 Use["PDERSD"] = 0;
 Use["PDERSPCA"] = 0;
 Use["PDEFoam"] = 0;
 Use["PDEFoamBoost"] = 0; // uses generalised MVA method boosting
 Use["KNN"] = 0; // k-nearest neighbour method
 //
 // --- Linear Discriminant Analysis
 Use["LD"] = 0; // Linear Discriminant identical to Fisher
 Use["Fisher"] = 0;
 Use["FisherG"] = 0;
 Use["BoostedFisher"] = 0; // uses generalised MVA method boosting
 Use["HMatrix"] = 0;
 //
 // --- Function Discriminant analysis
 Use["FDA_GA"] = 0; // minimisation of user-defined function using Genetics Algorithm
 Use["FDA_SA"] = 0;
 Use["FDA_MC"] = 0;
 Use["FDA_MT"] = 0;
 Use["FDA_GAMT"] = 0;
 Use["FDA_MCMT"] = 0;
 //
 // --- Neural Networks (all are feed-forward Multilayer Perceptrons)
 Use["MLP"] = 1; // Recommended ANN
 Use["MLPBFGS"] = 0; // Recommended ANN with optional training method
 Use["MLPBNN"] = 0; // Recommended ANN with BFGS training method and bayesian regulator
 Use["CFMlpANN"] = 0; // Depreciated ANN from ALEPH
 Use["TMlpANN"] = 0; // ROOT's own ANN
 //
 // --- Support Vector Machine
 Use["SVM"] = 0;
 //
 // --- Boosted Decision Trees
 Use["BDT"] = 0; // uses Adaptive Boost
 Use["BDTG"] = 0; // uses Gradient Boost
 Use["BDTB"] = 0; // uses Bagging
 Use["BDTD"] = 0; // decorrelation + Adaptive Boost
 //
 // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules")
 Use["RuleFit"] = 0;

37

Functionalities : correlations

- Linear correlations are easily investigated via the GUI :
- (Here, no correlation)

38

Functionalities : correlations

- Linear correlations are easily investigated via the GUI :
- Signal and background input variables can be correlated differently

39

Functionalities : performance

- Many classifiers can be trained in one shot
- Useful for performance comparison

40

Advantages and drawbacks of
different classifiers

From TMVA manual

41

126 10 Which MVA method should I use for my problem?

MVA METHOD

CRITERIA Cuts Likeli-
hood

PDE-
RS /
k-NN

PDE-
Foam

H-
Matrix

Fisher
/ LD

MLP BDT Rule-
Fit

SVM

Perfor-
No or linear
correlations

� �� � � � �� �� � �� �

mance Nonlinear
correlations

◦ ◦ �� �� ◦ ◦ �� �� �� ��

Training ◦ �� �� �� �� �� � ◦ � ◦Speed Response �� �� ◦ � �� �� �� � �� �

Robust- Overtraining �� � � � �� �� � ◦ � ��
ness Weak variables �� � ◦ ◦ �� �� � �� � �

Curse of dimensionality ◦ �� ◦ ◦ �� �� � � �

Transparency �� �� � � �� �� ◦ ◦ ◦ ◦

Table 6: Assessment of MVA method properties. The symbols stand for the attributes “good” (��), “fair”
(�) and “bad” (◦). “Curse of dimensionality” refers to the “burden” of required increase in training statistics
and processing time when adding more input variables. See also comments in the text. The FDA method is
not listed here since its properties depend on the chosen function.

10 Which MVA method should I use for my problem?

There is obviously no generally valid answer to this question. To guide the user, we have attempted
a coarse assessment of various MVA properties in Table 6. Simplicity is a virtue, but only if it is not
at the expense of significant loss of discrimination power. Robustness with respect to overtraining
could become an issue when the training sample is scarce. Some methods require more attention
than others in this regard. For example, boosted decision trees are particularly vulnerable to
overtraining if used without care.37 To circumvent overtraining a problem-specific adjustment of
the pruning strength parameter is required.

To assess whether a linear discriminant analysis (LDA) could be sufficient for a classification (re-
gression) problem, the user is advised to analyse the correlations among the discriminating variables
(among the variables and regression target) by inspecting scatter and profile plots (it is not enough
to print the correlation coefficients, which by definition are linear only). Using an LDA greatly
reduces the number of parameters to be adjusted and hence allow smaller training samples. It
usually is robust with respect to generalisation to larger data samples. For moderately intricate
problems, the function discriminant analysis (FDA) with some added nonlinearity may be found
sufficient. It is always useful to cross-check its performance against several of the sophisticated
nonlinear methods to see how much can be gained over the use of the simple and very transparent
FDA.

37However, experience shows that the BDT performance is amazingly robust – even for strongly overtrained decision
trees.

Exercises

- Problem inspired by Higgs searches in H->2photons channel at LHC

- Goal : be able to estimate the sensitivity of a search for a small peak over a
huge background, using multivariate methods

- 3 exercises :
- Setting up Root and TMVA environment, TMVA basics
- Using a MVA method inside the analysis
- Estimation of analysis sensitivity

42

