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Introduction / outline
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- Much more material in Tom Junk lectures on this topics!
- This lecture will try to to focus on how analysis sensitivity estimate can be related to 

multivariate techniques

- We will review the CLs method
- How the CLs method is used to produce the exclusion limit plot
- How are treated the systematic uncertainties
- p-values, best fit, look-elsewhere effect



Tevatron Higgs combined result
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In addition, we provide in Figure 9 (and listed in Table VIII) the values for the observed 1-CLs+b and its expected
distribution as a function of mH . The value CLs+b is the p-value for the signal-plus-background hypothesis. These
values can be used to obtain alternative upper limits that are more constraining compared to those obtained via the
CLs method. In such a formulation, the power of the search is limited at a level chosen a priori to avoid setting limits
when the background model grossly overpredicts the data or the data exhibit a large background-like fluctuation (e.g.,
limit at the -1σ background fluctuation level.). Within Figure 9, 95% C.L. power-constrained limits can be found
at the points for which 1-CLs+b exceeds 95%. The expected range of exclusion is ∼40% larger using PCL than the
Bayesian and CLs limits quoted here. We continue our convention of quoting Bayesian and CLs limits however.
In summary, we combine CDF and D0 results on SM Higgs boson searches, based on luminosities up to 8.2 fb−1.

Compared to our previous combination, more data have been added to the existing channels, additional channels
have been included, and analyses have been further optimized to gain sensitivity. We use the recommendation of the
PDF4LHC working group for the central value of the parton distribution functions and uncertainties [32]. We use the
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FIG. 7: Observed and expected (median, for the background-only hypothesis) 95% C.L. upper limits on the ratios to the SM
cross section, as functions of the Higgs boson mass for the combined CDF and D0 analyses. The limits are expressed as a
multiple of the SM prediction for test masses (every 5 GeV/c2) for which both experiments have performed dedicated searches
in different channels. The points are joined by straight lines for better readability. The bands indicate the 68% and 95%
probability regions where the limits can fluctuate, in the absence of signal. The limits displayed in this figure are obtained with
the Bayesian calculation.



LHC Higgs combined result
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Sensitivity estimate as MVA
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- Multi-channel combination : uses log-likelihood ratio as test statistic
- This can be seen as a giant multivariate analysis
- Combines event counting experiment, shape analysis in single variables (on 

e.g. invariant mass, MVA output)



Hypothesis testing
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- Analysis sensitivity estimate is related to hypothesis testing
- What is the likelihood of the data to be consistent with background only or signal

+background hypothesis ?

- Let us assume binned distribution case for simplicity
- Everything starts with the Poisson probability for observing Ndata event when 

Nb or Ns+Nb events are expected
- Statistical test : the likelihood ratio of the two hypothesis :

- For an histograms made of N bins :

- Multi-channel (or multi-variable) case :

- The log-likelihood ratio :

H → γγ MVA analysis

Multi-variable likelihood (II)

A typical statistical test is the likelihood ratio between S + B hypothesis and B
hypothesis with respect to data (here in the case of a counting experiment) :

Q =
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Confidence levels
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- The test-statistic -2.lnQ converges to a Chi2 law with large statistics

- We would like to quantify the agreement between data and signal plus 
background hypothesis or background-only hypothesis

- For this, one has to generate the expected Probability distributions of the test-
statistic in the two hypothesis (i.e. when Ndata=Ns+Nb and Ndata=Nb)

- This need to generate a number of toy-experiments (usually > 1000) - this step is 
avoided in the Bayesian framework

- The agreement between data and S+B hypothesis is given by CLs+b, and with the 
B hypothesis by CLb : 

- CLb : probability to get a result less compatible with the B only hypothesis than the 
observed one

- CLs+b : probability to get a result which is less compatible with a signal when the 
signal hypothesis is true

H → γγ MVA analysis

Statistical method to evaluate sensitivity (II)

Generate 105 fake data pseudo-experiments with Poissonian probability for the
two hypothesis, S + B (Ndata = NS + NB ) and B alone (Ndata = NB )

For each pseudo-experiment, get the Log Likelihood Ratio :

ln(Q) =
Nchannels

X

i

Nbinsj
X

ij

Ndataij
× ln

“

1 +
NSij

NBij

”

− NSij

Compute the estimate of CLs+b and CLb :

CLs+b = Ps+b(lnQ ≤ lnQobs) =

Z lnQobs

−∞

dPs+b

dlnQ
dlnQ

CLb = Pb(lnQ ≤ lnQobs) =

Z

lnQobs

−∞

dPb

dlnQ
dlnQ

Systematics : when generating pseudo-experiments, smear NS (NB ) using a
Gaussian with a width ∆NS (∆NB) centered on initial NS (NB )

Exclusion limits at 95% CL : redo pseudo-experiments increasing signal yield
until CLS = CLS+B/CLB < 0.05 is reached (in the hypothesis of observing B
only in data)

Significance obtained by the formula CLb = erf (S/
√

2) (one-sided gaussian CL)

Nicolas Chanon Update on H → γγ MVA analysis 19 / 19



CLs method
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CLs method is used since LEP
- CLs = CLs+b/CLb is not a probability
- So-called ʻmodified frequentistʼ method
- CLs+b has problems when Nobs is far below the expected Nb
- More conservative than CLs+b
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Figure 9: The ratio CLs = CLs+b/CLb for the signal plus background hypothesis. Solid line: ob-
servation; dashed line: median background expectation. The dark and light shaded bands around
the median expected line correspond to the 68% and 95% probability bands. The intersection of the
horizontal line for CLs = 0.05 with the observed curve is used to define the 95% confidence level lower
bound on the mass of the Standard Model Higgs boson.
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Figure 6: Probability density functions corresponding to fixed test masses mH, for the background
and signal plus background hypotheses. The observed values of the test statistic −2 ln Q are indicated
by the vertical lines. The light shaded areas, 1 − CLb, measure the confidence for the background
hypothesis and the dark shaded areas, CLs+b, the confidence for the signal plus background hypothesis.
Plot (a): test mass mH = 115 GeV/c2; (b): mH = 110 GeV/c2; (c): mH = 120 GeV/c2.
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Exclusion : observed/expected
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Exclusion at 95% confidence level : CLs<0.05
- Meaning that the probability to observe more events than seen in the data with the 

signal+background hypothesis (normalized to the probability in the background 
hypothesis only) is less than 5%

Observed limit at 95% CL
- Once the probability distributions of lnQ in the two hypothesis has been computed, one 
can integrate over them until lnQobs observed in data. This gives CLs and there is 
exclusion if CLs<0.05

Expected limit
- Replace lnQobs with lnQb ? (ie test statistic in the hypothesis of background only in 

data)
- This can be done but is called the Asimov dataset. The probability to get in data the 

exact B distribution is very low (because of statistical fluctuations)
- Again, one has to generate toy-experiments, according to the B only hypothesis



Signal strength modifier
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Signal strength modifier :
- Let us test not only the Signal hypothesis 
s+b, but also μ.s+b where μ is the signal 
strength modifier

Exclusion limit at 95% CL
- CLs is computed for each signal strength 

(with some step). When CLs<0.05 is 
reached, there is exclusion at 95% CL



Exclusion : median, sigma bands
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Median expected limit at 95% CL
- One run pseudo-experiments according to B 

only hypothesis in the pseudo-data (e.g. 1000)

- For each pseudo-experiment, let us compute 
CLs+b and CLb => CLs for all signal strength

- For each pseudo-experiment, scan over the 
signal strength to find μ which has CLs<0.05

- This gives μ95CL for each pseudo-experiment
- Plot the distribution of μ95CL

- Median : expect limit at 95% CL (50% 
quantile)

- 1-σ up and down bands : 21% and 79% 
quantiles 

- 2-σ up and down bands : 2.5% and 97.5% 
quantiles

SM/95CL
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Statistical uncertainties
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Statistical uncertainties are taken into account :
- In the definition of the likelihood (likelihood of b only to fluctuate to produce observed 

data) with the Poisson law : sensitive to statistical fluctuations
- When generating the toys to produce the lnQ distributions
- When generating the toys to produce the r95CL distributions

- Additionally, one can constrain the likelihood with nuisance parameters to take into 
account the systematic uncertainties

- Often, systematic uncertainties are measured from control samples in data and are 
therefore reduced with more luminosity : behavior of a statistical uncertainty



Nuisance parameters
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- Nuisance parameters is a bayesian way of taking into account the systematic 
uncertainties in the likelihood

- The bayesian priors for the uncertainties are just multiplied to the likelihood

Example.
- N events expected. 
- Common choice : gaussian uncertainty. 1-σ width : the value of the uncertainty.
- Instead of generating N events for one toy, generate ε.N events where ε is a random 

number following a gaussian pdf centered in 1 and with width being the value of 
the uncertainty.

- This example, the efficiency has a gaussian pdf.

Pdfs for uncertainties : gaussian, log-normal, gamma
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Figure 6: (Left) Log-normal distributions with κ = 1.10, 1.20, 1.33 and 1.50. (Right)
Gamma distribution with the number of events in a control sample B = 100, 25, 9 and 4.

Table 2: Mapping between Bayesian posterior pdfs ρ(θ|θ̃) and corresponding frequentist
auxiliary measurement pdf ’s p(θ̃ | θ) and “primordial” prior πθ(θ) as discussed in Section 2
and represented by Eq. 1 for the uncertainties discussed in this section.

Type of uncertainties Bayesian posterior ρ(θ|θ̃) Frequentist p(θ̃ | θ) Prior πθ(θ)

Unconstrained flat flat flat

Gaussian/Log-normal ρ(θ | θ̃) = 1√
2π

exp
�
− (θ−θ̃)2

2

�
p(θ̃ | θ) = 1√

2π
exp

�
− (θ̃−θ)2

2

�
flat

Statistical uncertainties ρ(θ |N) = θN

N ! exp(−θ) p(N | θ) = θN

N ! exp(−θ) flat

15

!"#$%&'()*#$+),#*)"''-$!"#$%&'()*#$+),#*)"''-$
( . ( / * *( . ( / * *('&$.)01)()2312#$/3*24*35)'1('&$.)01)()2312#$/3*24*35)'1

• A counting experiment with background uncertainty

• The Likelihood ratio

( , | , , ) ( | ) ( | , )meas meas bL n b s b Poiss n s b G b b

• The Likelihood-ratio

( , | , , )
( , ) ˆˆ( | )

measL n b s b
b

L b b
Where          are MLEˆˆ,s b

is distributed as 
f f f

ˆ( , | , , )measL n b s b

2
2 log ( )

a       with N degrees of freedom , N being the number of 
free parameters (parameters of interest) 

2

(i thi N 2)

+6/$.535)75)27$('&$%#-#75&)317$8$9)*3:$;&'778!3)<31$=1)>#&7)5?8$@31$ABBC40

(in this case N=2)



LEP/Tevatron/LHC Test statistic
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- Concept of profiling : first fit of the data to measure the nuisance parameters
- Profiling is a way of measuring the nuisance parameters from data at each toy => 

systematic become statistic uncertainty

The pair of parameters µ̂ and θ̂ gives the global maximum of the likelihood. The

additional constraint µ̂ ≤ µ ensures that the obtained limits are one-sided. The

advantage of this test statistic is that its pdf distribution can be approximated by

asymptotic formulae based on Wilks and Wald theorems, as derived in Ref. [11] (see

Appendix A.1.3).

• Yet another way to treat nuisance parameters is to re-interpret the systematic un-

certainty pdfs ρ(θ|θ̃) as posteriors of some real or imaginary measurements. Such re-

interpretation allows one to build sampling distributions without explicit Bayesian

marginalisation. It is this approach to constructing sampling distributions of the test

statistic that is chosen for the ATLAS+CMS Higgs search combination in Summer

2011. It is described in detail in Section 2.

From the overview presented in this section, the CLs procedure chosen for the summer

2011 combination actually differs in details from the ones used at LEP and Tevatron

(which were also different). For comparison purposes, all the differences are summarised

in Table 11 below. The LEP prescription does not allow one to take full advantage of

the constraints imposed on the nuisance parameters by the data used in the statistical

analysis. The Tevatron and LHC versions of CLs, though constructed differently, in

practice—as we find—give nearly identical results. The benefit of the LHC-type CLs is

that it uses a test statistic with the desired asymptotic properties. Also, the sampling

distributions of the test statistic can be built following the pure frequentist language.

Table 11: Comparison of CLs definitions as used at LEP, Tevatron, and adopted for the

summer 2011 Higgs combination at LHC.

Test statistic Profiled? Test statistic sampling

LEP qµ = −2 ln
L(data|µ,θ̃)
L(data|0,θ̃) no Bayesian-frequentist hybrid

Tevatron qµ = −2 ln
L(data|µ,θ̂µ)
L(data|0,θ̂0)

yes Bayesian-frequentist hybrid

LHC q̃µ = −2 ln
L(data|µ,θ̂µ)
L(data|µ̂,θ̂)

yes frequentist

(0 ≤ µ̂ ≤ µ)

A.1.3 Profile Likelihood Asymptotic Approximation

If we remove the physical requirement µ̂ > 0 from the test statistic q̃µ based on the profile

likelihood ratio (Equation 30) then we find

qµ = −2 ln
L(data|µ, θ̂µ)
L(data|µ̂, θ̂)

, µ̂ ≤ µ (31)

38



Asymptotic limit
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Asymptotic limit for large statistics : arXiv:1007.1727
- Approximated formulae for high statistics
- Based on LHC-type test-statistic
- Formula based on the Asimov dataset : assuming no statistical fluctuation (S+B and B 

models that are given as input to the limit extraction procedure)
- Very fast (one mass point, one strength : ~1min against several hours)

Features :
- Asymptotic limit gets the median expected right
- Usually, sigma bands are too narrow with respect to the full CLs method
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Figure 3: (a) The pdf f(q0|0) for the counting experiment. The solid curve shows f(q0|0) from
Eq. (49) and the histograms are from Monte Carlo using different values of b (see text). (b) The
distributions f(q0|0) and f(q0|1) from both the asymptotic formulae and Monte Carlo simulation
based on s = 10, b = 10, τ = 1.

phenomenon can be seen in the tail of f(q0|0) in Fig. 3(b), which uses b = 10. The accuracy
then rapidly improves for increasing b.
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Figure 4: (a) The discovery significance Z0 obtained from Monte Carlo (points) corresponding to a
nominal value Z0 =

√
q0 = 4 (dashed line) as a function of the expected number of background events

b, in the counting analysis with a scale factor τ = 1. (b) The median of q0 assuming data distributed
according to the nominal signal hypothesis from Monte Carlo for different values of s and b (points)
and the corresponding Asimov values (curves).

Figure 4(b) shows the median value of the statistic q0 assuming data distributed according
to the nominal signal hypothesis fromMonte Carlo (points) and the value based on the Asimov
data set as a function of b for different values of s, using a scale factor τ = 1. One can see
that the Asimov data set leads to an excellent approximation to the median, except at very
low s and b.

Figure 5(a) shows the distribution of the test statistic q1 for s = 6, b = 9, τ = 1 for data
corresponding to a strength parameter µ′ = 1 and also µ′ = 0. The vertical lines indicate the

24
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Exclusion limits
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Results are usually presented in two ways :
- Upper limit on the cross-section (times branching ratio) : no theory uncertainty
- Upper limit on the cross-section divided by the SM cross-section
- Observed limit usually fluctuates around the expected limit



Testing different mass points : 
MVA ?
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- Exclusion limits (and p-values, see later) are computed for each mass point to be tested
- If with a 0.5 GeV step, one donʼt generate each signal sample for this mass (CPU 

demanding)
- Rather interpolate the shapes of the discriminating variables between each generated 

mass point (see T. Junk lectures)

Classifiers used for sensitivity
- Have to be re-trained for each mass point
- If training on very close mass points, statistical fluctuation for results might happens
- On the other hand, interpolation is problematic
- Usually not too close mass points are tested (ex: HWW)



p-value
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p-value = 1-CLb
- Probability that the background model fluctuates to produce the fluctuation seen 

in data
- P-value is related to significance : 1-CLb = erf(Z/sqrt(2))
- Local p-value Z=5 (p-value<2.8·10-7) does not mean yet discovery....
- Local p-value does not take into account the fact that similar searches are 

performed in near-by mass points (=> correction for LEE, global p-value)



Best fit
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Channel compatibility
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Look elsewhere effect
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- When estimating p-value at one mass point, one 
should ideally take into account the p-value of the 
other mass points tried

- Re-introduce the mass dependence s(m) for the 
signal model

- What we are looking at is a p-value over the mass 
points : global p-value

- Bounds on the p-value can be provided [arXiv:
1005.1891]

Where <Nu> is the average number of upcrossings 
at the level u of the test-statistic

Eilam Gross, Ofer Vitells: Trial factors for the look elsewhere effect in high energy physics 5
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Fig. 1. (top) An example pseudo-experiment with background only. The solid line shows the best signal
fit, while the dotted line shows the background fit. (bottom) The likelihood ratio test statistic q(m). The
dotted line marks the reference level c0 with the upcrossings marked by the dark dots. Note the broadening
of the fluctuations as m increases, reflecting the increase in the signal gaussian width.

Figure 3 shows the corresponding trial factor,
compared to the bound calculated from eq.(3)
and the asymptotic approximation of eq.(12).
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Fig. 3. The trial factor estimated from toy Monte
Carlo simulations (solid line), with the upper bound
of eq.(3) (dotted black line) and the asymptotic ap-
proximation of eq.(12) (dotted red line). The yellow
band represents the statistical uncertainty due to the
limited sample size.

We consider in addition a case where the
number of degrees of freedom is more than one.
For this purpose, we assume several indepen-
dent channels, each identical to the one described
above, and where the signal normalizations (µ1, ..., µs)
are free parameters. (This could represent, for
example, a case where one is searching for a res-
onance in several decay channels, with unknown
branching ratios). The reference level is chosen
to be c0 = s− 1 as discussed in the previous sec-
tion. The resulting distributions and trial factors
for s = 2, 3 are shown in figures 4 and 5. As be-
fore, the the bound (3) agrees with the observed
p-value, within statistical variation. The rate at
which the asymptotic approximation (11) con-
verges to the bound becomes slower when the
number of degrees of freedom increases, mak-
ing it less accurate, however the trend of linear
growth is evident.

4 Conclusions

The look-elsewhere effect presents a case when
the standard regularity conditions of Wilks’ the-

theorem [13] do not apply. That is one cannot construct a unique test statistic en-

compassing all possible signals and having asymptotic χ2
-behaviour. Hence, specialised

methods are required for quantifying the compatibility of a given observation with the

background-only hypothesis.

The global test statistic to be associated with the search in some broad mass range

can be written as follows:

q0(m̂H) = max
mH

q0(mH). (13)

In the asymptotic regime and for very small p-values, a procedure exists and is well

described in reference [14] that is largely based on Davies’ result [15]. Following these

references, the p-value of the global test statistic can be written as follows:

pglobal
b

= P (q0(m̂H) > u) ≤ �Nu�+
1

2
Pχ2

1
(u) (14)

where �Nu� is the average number of up-crossings of the likelihood ratio scan q0(mH) at

a level u. The definition of up-crossings is illustrated in Fig. 4. The ratio of global and
local p-values is often referred to as the trial factor.

The average number of up-crossings at two levels u and u0 are related via the following

formula

�Nu� = �Nuo
� e−(u−uo)/2, (15)

which allows one evaluate the term �Nu� at the high level u from measuring the average

number of up-crossings �Nuo
� at some lower reference level u0.

When one has a well defined background model, then the number of low-threshold

up-crossings �Nuo
� can be measured by generating a relatively small set of pseudo-data.

In many analyses, such a background model indeed can be constructed. However, the use

of cuts or multivariate analysis (MVA) selections optimised independently for different
Higgs boson masses does not allow one to construct a background model that would be

guaranteed to account for all correlations between nearby test mass points.

The foreseen way around this is to count the number of up-crossings with the data

themselves. Indeed, when the look-elsewhere effect is large (and this is the only case when

we really care to evaluate it), the number of up-crossings at low thresholds will be large

and reasonably well measured
3
. This procedure should give us a fair estimate of the trial

factor by which we need to “de-rate” the local p-value derived from the maximal value

q0(m̂H) observed in the scan. It should be noted that there is no direct relation between

the number of mass points and the trial factor since the latter is determined by the mass
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For example, let us assume that by performing a scan over Higgs boson masses mH , we
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local p-value of 0.13% and local significance of 3σ (Eq. 11). Next, let us assume that the
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8. Then, the global p-value corresponding to the observed excess (with the local p-value
of 0.13% or 3σ-significance) can be derived from the Eq. 14 and is about 15%. Therefore,

the trial factor for a local 3σ excess in this example is about 100.

3In the presence of a signal, this number might be biased by one unit.
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Look elsewhere effect and MVA
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- Procedure involves running toys with small steps in mass: compute the mean number 
of expected crossing at a low level of the test-statistic (e.g. local Z=1)

- Derive the global significance at e.g. local Z=2.6
- Here again, classifiers are trained for each generated mass point
- MVA are not suited for evaluating sensitivity in a fine grain steps, approximations have 

to be made



Multi-channel/variable likelihood
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Different flavour of analysis sensitivity estimate per channel
- Counting experiment
- Categories
- Shape

Different observables are used to estimate the sensitivity accross channels 
(MVA output, invariant mass of different final states...)

One can also imagine channels using several observables to estimate 
- Example of ATLAS Hgg PTDR (mass, pT, angular distribution)



RooStat
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RooStat : framework giving tools to compute the analysis sensitivity
https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome

- Based on ROOT and RooFit
- Many methods available : full CLs, asymptotic, bayesian framework
- Allow to combine different categories

Last Exercise (to go further...)
- Try CLs with one category, once the selection on the MVA output has been 

applied
- Compute observed limit and expected limit with Asimov dataset

https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome


Thank you !
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